Abstract
Total knee arthroplasty (TKA) is one of the most successful surgical procedures worldwide. It improves quality of life, mobility, and functionality for the vast majority of patients. However, a TKA surgery may fail over time for several reasons, thus it requires a revision arthroplasty surgery. Identifying TKA implants is a critical consideration in preoperative planning of revision surgery. This study aims to develop, train, and validate deep convolutional neural network models to precisely classify four widely-used TKA implants based on only plain knee radiographs. Using 9,052 computationally annotated knee radiographs, we achieved weighted average precision, recall, and F1-score of 0.97, 0.97, and 0.97, respectively, with Cohen Kappa of 0.96.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kurtz, S.M., Ong, K.L., Lau, E., Bozic, K.J.: Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. JBJS 96(8), 624–30 (2014)
Kremers, H.M., et al.: Prevalence of total hip and knee replacement in the United States. J. Bone Joint Surg. Am. Vol. 97(17), 1386 (2015)
Losina, E., et al.: Cost-effectiveness of total knee arthroplasty in the United States: patient risk and hospital volume. Arch. Intern. Med. 169(12), 1113–21 (2009)
Kremers, H.M., et al.: Comparative survivorship of different tibial designs in primary total knee arthroplasty. J. Bone Joint Surg. Am. 96(14), e121 (2014)
Price, A.J., et al.: Knee replacement. Lancet 392(10158), 1672–1682 (2018)
Bozic, K.J., et al.: The epidemiology of revision total knee arthroplasty in the United States. Clin. Orthop. Relat. Res.® 468(1), 45–51 (2010)
Kurtz, S., Ong, K., Lau, E., Mowat, F., Halpern, M.: Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. Jbjs 89(4), 780–5 (2007)
Wilson, N.A., Jehn, M., York, S., Davis III, C.M.: Revision total hip and knee arthroplasty implant identification: implications for use of unique device identification 2012 AAHKS member survey results. J. Arthroplasty 29(2), 251–5 (2014)
Steiner, C., Andrews, R., Barrett, M., Weiss, A.: HCUP projections: mobility/orthopedic procedures 2003 to 2012. US agency for healthcare research and quality (2012)
Scuderi, G.R.: Revision total knee arthroplasty: how much constraint is enough? Clin. Orthop. Relat. Res.® 392, 300–305 (2001)
Paul, H.Y., et al.: Automated detection & classification of knee arthroplasty using deep learning. Knee 27, 535–542 (2019)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 472–480 (2017)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 23 November 2015
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, 12 February 2017
Strubell, E., Verga, P., Belanger, D., McCallum, A.: Fast and accurate entity recognition with iterated dilated convolutions. arXiv preprint arXiv:1702.02098, 7 February 2017
Zhou, L., Zhang, C., Wu, M.: D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: CVPR Workshops, 18 June 2018, pp. 182–186 (2018)
Wang, Y., Hu, S., Wang, G., Chen, C., Pan, Z.: Multi-scale dilated convolution of convolutional neural network for crowd counting. Multimed. Tools Appl. 79, 1057–1073 (2019). https://doi.org/10.1007/s11042-019-08208-6
Liu, S., Xu, H., Liu, Y., Xie, H.: Improving brain tumor segmentation with dilated pseudo-3D convolution and multi-direction fusion. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11961, pp. 727–738. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37731-1_59
Wang, B., Zhang, X., Zhou, X., Li, J.: A gated dilated convolution with attention model for clinical cloze-style reading comprehension. Int. J. Environ. Res. Public Health 17(4), 1323 (2020)
Rafi A.M., et al.: Application of DenseNet in camera model identification and post-processing detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 19–28 (2019)
Chen, X., Du, J., Zhang, H.: Lipreading with DenseNet and resBi-LSTM. SIViP 14(5), 981–989 (2020). https://doi.org/10.1007/s11760-019-01630-1
Chen, Y., Christodoulou, A.G., Zhou, Z., Shi, F., Xie, Y., Li, D.: MRI super-resolution with GAN and 3D multi-level DenseNet: smaller, faster, and better. arXiv preprint arXiv:2003.01217, 2 March 2020
Zhang, X., Pan, W., Bontozoglou, C., Chirikhina, E., Chen, D., Xiao, P.: Skin capacitive imaging analysis using deep learning GoogLeNet. In: Advances in Intelligent Systems and Computing, 16 July 2020
Balagourouchetty, L., Pragatheeswaran, J.K., Pottakkat, B., Ramkumar, G.: GoogLeNet based ensemble FCNet classifier for focal liver lesion diagnosis. IEEE J. Biomed. Health Inform. 24(6), 1686–1694 (2020). https://ieeexplore.ieee.org/abstract/document/8845663
Kim, J.H., Seo, S.Y., Song, C.G., Kim, K.S.: Assessment of electrocardiogram rhythms by GoogLeNet deep neural network architecture. J. Healthc. Eng. 2019, 1–10 (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512052/
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 1(42), 60–88 (2017)
Xu, Y., et al.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1626–1630. IEEE, 4 May 2014
López-Linares Román, K., García Ocaña, M.I., Lete Urzelai, N., González Ballester, M.Á., Macía Oliver, I.: Medical image segmentation using deep learning. In: Chen, Y.-W., Jain, L.C. (eds.) Deep Learning in Healthcare. ISRL, vol. 171, pp. 17–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32606-7_2
Tafti, A.P., Bashiri, F.S., LaRose, E., Peissig, P.: Diagnostic classification of lung CT images using deep 3D multi-scale convolutional neural network. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 412–414. IEEE, 4 June 2018
Abbas, A., Abdelsamea, M.M., Gaber, M.M.: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. arXiv preprint arXiv:2003.13815, 26 March 2020
Acknowledgment
This work was supported by the National Institutes of Health (NIH) grants R01AR73147 and P30AR76312.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yan, S. et al. (2020). DeepTKAClassifier: Brand Classification of Total Knee Arthroplasty Implants Using Explainable Deep Convolutional Neural Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-64559-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64558-8
Online ISBN: 978-3-030-64559-5
eBook Packages: Computer ScienceComputer Science (R0)