Nothing Special   »   [go: up one dir, main page]

Skip to main content

Two-Stage Submodular Maximization Problem Beyond Non-negative and Monotone

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12337))

  • 755 Accesses

Abstract

Two-stage submodular maximization problems have been recently applied in machine learning, economics and engineering. In this paper, we consider a two-stage submodular problem subject to cardinality constraint and matroid constraint. Previous work for this problem usually assume that the objective functions are non-negative and monotone. Our focus in this work relaxes these assumptions by considering an objective function which is the expected difference of a non-negative monotone submodular function and a non-negative monotone modular function, and hence neither non-negative nor monotone. We present strong approximation guarantees by offering two bi-factor approximation algorithms for this problem. The first is a deterministic \(\left( \frac{1}{2}\left( 1-e^{-2}\right) , 1\right) \)-approximation algorithm, and the second is a randomized \(\left( \frac{1}{2}\left( 1-e^{-2}\right) -\epsilon , 1\right) \)-approximation algorithm with improved time efficiency. Moreover, we generalize the matroid constraint to k-matroid constraint and also give the corresponding approximation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: KDD, pp. 671–680 (2014)

    Google Scholar 

  2. Balkanski, E., Mirzasoleiman, B., Krause, A., Singer, Y.: Learning sparse combinatorial representations via two-stage submodular maximization. In: ICML, pp. 2207–2216 (2016)

    Google Scholar 

  3. El-Arini, K., Veda, G., Shahaf, D., Guestrin, C.: Turning down the noise in the blogosphere. In KDD, pp. 289–298 (2009)

    Google Scholar 

  4. Epasto, A., Mirrokni, V.S., Zadimoghaddam, M.: Bicriteria distributed submodular maximization in a few rounds. In: SPAA, pp. 25–33 (2017)

    Google Scholar 

  5. Feldman, M.: Guess free maximization of submodular and linear sums. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 380–394. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_28

    Chapter  MATH  Google Scholar 

  6. Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: COLT, pp. 758–784 (2017)

    Google Scholar 

  7. Feldman, M., Karbasi, A., Kazemi, E.: Do less, get more: streaming submodular maximization with subsampling. CoRR, abs/1802.07098 (2018). http://arxiv.org/abs/1802.07098 maximization. In: FOCS, pp. 570–579 (2011)

  8. Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization beyond non-negativity: guarantees, fast algorithms, and applications. In: ICML, pp. 2634–2643 (2019)

    Google Scholar 

  9. Kirchhoff, K., Bilmes, J.: Submodularity for data selection in statistical machine translation. In: EMNLP, pp. 131–141 (2014)

    Google Scholar 

  10. Krause, A., Gomes, R.G.: Budgeted nonparametric learning from data streams. In: ICML, pp. 391–398 (2010)

    Google Scholar 

  11. Kempe, D., Kleinberg, J.M., Tardos, á: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)

    Google Scholar 

  12. Krause, A., Guestrin, C.: Near-optimal nonmyopic value of information in graphical models. In: UAI, pp. 324–331 (2005)

    Google Scholar 

  13. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in MapReduce and streaming. TOPC 2(3), 141–1422 (2015)

    Article  Google Scholar 

  14. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math. 23(4), 2053–2078 (2010)

    Article  MathSciNet  Google Scholar 

  15. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondraák, J., Krause, A.: Lazier than lazy greedy. In: AAAI, pp. 1812–1818 (2015)

    Google Scholar 

  16. Mirzasoleiman, B., Karbasi, A., Badanidiyuru, A., Krause, A.: Distributed submodular cover: succinctly summarizing massive data. In: NIPS, pp. 2881–2889 (2015)

    Google Scholar 

  17. Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular maximization: identifying representative elements in massive data. In: NIPS, pp. 2049–2057 (2013)

    Google Scholar 

  18. Mitrovic, M., Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Data summarization at scale: a two-stage submodular approach. In: ICML, pp. 3593–3602 (2018)

    Google Scholar 

  19. Lin, H., Bilmes, J.A.: Multi-document summarization via budgeted maximization of submodular functions. In: HLT-NAACL, pp. 912–920 (2010)

    Google Scholar 

  20. Schrijver, A.: Combinatorial Optimization-Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  21. Singla, A., Bogunovic, I., Bartok, G., Karbasi, A., Krause, A.: Near-optimally teaching the crowd to classify. In: ICML, pp. 154–162 (2014)

    Google Scholar 

  22. Stan, S., Zadimoghaddam, M., Krause, A., Karbasi, A.: Probabilistic submodular maximization in sub-linear time. In: ICML, pp. 3241–3250 (2017)

    Google Scholar 

  23. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported or partially supported by the National Natural Science Foundation of China (Grant Nos. 11871280, 11501171, 11771251, 11971349, 11771386 and 11728104), the Natural Sciences and Engineering Research Council of Canada (NSERC) Grant 06446 and Qinglan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Chang, H., Ma, R., Du, D., Zhang, X. (2020). Two-Stage Submodular Maximization Problem Beyond Non-negative and Monotone. In: Chen, J., Feng, Q., Xu, J. (eds) Theory and Applications of Models of Computation. TAMC 2020. Lecture Notes in Computer Science(), vol 12337. Springer, Cham. https://doi.org/10.1007/978-3-030-59267-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59267-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59266-0

  • Online ISBN: 978-3-030-59267-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics