Nothing Special   »   [go: up one dir, main page]

Skip to main content

Aggregation and Garbage Collection for Online Optimization

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2020)

Abstract

Online optimization approaches are popular for solving optimization problems where not all data is considered at once, because it is computationally prohibitive, or because new data arrives in an ongoing fashion. Online approaches solve the problem iteratively, with the amount of data growing in each iteration. Over time, many problem variables progressively become realized, i.e., their values were fixed in the past iterations and they can no longer affect the solution. If the solving approach does not remove these realized variables and associated data and simplify the corresponding constraints, solving performance will slow down significantly over time. Unfortunately, simply removing realized variables can be incorrect, as they might affect unrealized decisions. This is why this complex task is currently performed manually in a problem-specific and time-consuming way. We propose a problem-independent framework to identify realized data and decisions, and remove them by summarizing their effect on future iterations in a compact way. The result is a substantially improved model performance.

Partly funded by Australian Research Council grant DP180100151.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://becool.info.ucl.ac.be/resources/benchmarks-dynamic-and-stochastic-vehicle-routing-problem-time-windows.

  2. 2.

    https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop.

References

  1. Barták, R.: Dynamic global constraints in backtracking based environments. Ann. Oper. Res. 118, 101–119 (2003). https://doi.org/10.1023/A:1021805623454

    Article  MathSciNet  MATH  Google Scholar 

  2. Bent, R., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Oper. Res. 52(6), 977–987 (2004)

    Article  Google Scholar 

  3. Bent, R., Van Hentenryck, P.: Online stochastic optimization without distributions. In: ICAPS 2005, pp. 171–180 (2005)

    Google Scholar 

  4. Brown, K.N., Miguel, I.: Uncertainty and change. In: Handbook of Constraint Programming, pp. 731–760. Elsevier (2006). (Chap. 21)

    Google Scholar 

  5. Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1(3/4), 197–206 (1955)

    Article  MathSciNet  Google Scholar 

  6. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In: AAAI 1988, pp. 37–42. AAAI Press, June 1988

    Google Scholar 

  7. Ek, A., Garcia de la Banda, M., Schutt, A., Stuckey, P.J., Tack, G.: Modelling and solving online optimisation problems. In: AAAI 2020, pp. 1477–1485. AAAI Press (2020)

    Google Scholar 

  8. Faltings, B., Macho-Gonzalez, S.: Open constraint programming. Artif. Intell. 161(1–2), 181–208 (2005)

    Article  MathSciNet  Google Scholar 

  9. Gecode Team. Gecode: A generic constraint development environment (2020). http://www.gecode.org

  10. Graham, R.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581 (1966)

    Article  Google Scholar 

  11. Jaillet, P., Wagner, M.R.: Online vehicle routing problems: a survey. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces, vol. 43, pp. 221–237. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-77778-8_10

    Chapter  Google Scholar 

  12. Jones, R.E., Hosking, A.L., Moss, J.E.B.: The Garbage Collection Handbook: The Art of Automatic Memory Management. Chapman and Hall/CRC Applied Algorithms and Data Structures Series. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  13. Mears, C., Garcia de la Banda, M., Wallace, M., Demoen, B.: A method for detecting symmetries in constraint models and its generalisation. Constraints 20(2), 235–273 (2014). https://doi.org/10.1007/s10601-014-9175-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. 46, 303–341 (2013)

    Article  MathSciNet  Google Scholar 

  15. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  16. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook of Scheduling - Algorithms, Models, and Performance Analysis. Chapman and Hall/CRC (2004)

    Google Scholar 

  17. Roelofs, M., Bisschop, J.: Time-based modelling. In: AIMMS: The Language Reference, May 2, 2019 edn. (2019). www.aimms.com. (Chap. 33)

  18. Schulte, C., Stuckey, P.J.: Dynamic variable elimination during propagation solving. In: Antoy, S., Albert, E. (eds.) Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, Valencia, Spain, 15–17 July 2008, pp. 247–257. ACM (2008)

    Google Scholar 

  19. Sethi, S., Soerger, G.: A theory of rolling horizon decision making. Ann. Oper. Res. 29, 387–415 (1991). https://doi.org/10.1007/BF02283607

    Article  MathSciNet  MATH  Google Scholar 

  20. Van Hentenryck, P., Bent, R.: Online Stochastic Combinatorial Optimization. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  21. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic environments: a survey. Constraints 10(3), 253–281 (2005). https://doi.org/10.1007/s10601-005-2239-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ek, A., Garcia de la Banda, M., Schutt, A., Stuckey, P.J., Tack, G. (2020). Aggregation and Garbage Collection for Online Optimization. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics