Abstract
Using the conformable fractional derivative the notions of Lie derivative and full relative degree are extended to the fractional nonlinear systems. The canonical form of the fractional nonlinear systems is introduced and sufficient conditions for the existence of the canonical form for the systems are established. A method for finding nonlinear state-feedbacks linearizing the fractional nonlinear system is proposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)
Ostalczyk, P.: Epitome of the Fractional Calculus: Theory and Its Applications in Automatics. Wydawnictwo Politechniki Łódzkiej, Łódź (2008). (in Polish)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Kaczorek, T.: Fractional positive continuous-time systems and their reachability. Int. J. Appl. Comput. Sci. 18(2), 223–228 (2008)
Kaczorek, T.: Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans. Circuits Syst. 58(6), 1203–1210 (2011)
Busłowicz, M.: Stability of linear continuous time fractional order systems with delays of the retarded type. Bull. Pol. Acad. Sci. Tech. 56(4), 319–324 (2008)
Dzieliński, A., Sierociuk, D.: Stability of discrete fractional order state-space systems. J. Vib. Control 14(9/10), 1543–1556 (2008)
Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin (2012)
Kaczorek, T.: Practical stability of positive fractional discrete-time linear systems. Bull. Pol. Acad. Sci. Tech. 56(4), 313–317 (2008)
Dzieliński, A., Sierociuk, D., Sarwas, G.: Ultracapacitor parameters identification based on fractional order model. In: Proceedings of ECC 2009, Budapest (2009)
Jumerie, G.: The Leibniz rule for fractional derivatives holds with non-differentiable functions. Math. Stat. 1(2), 50–52 (2013)
Radwan, A.G., Soliman, A.M., Elwakil, A.S., Sedeek, A.: On the stability of linear systems with fractional-order elements. Chaos Solitones Fractals 40(5), 2317–2328 (2009)
Kaczorek, T.: An extension of Klamka’s method of minimum energy control to fractional positive discrete-time linear systems with bounded inputs. Bull. Pol. Acad. Tech. 62(2), 227–231 (2014)
Klamka, J.: Controllability of Dynamical Systems. Kluwer Academic Press, Dordrecht (1991)
Klamka, J.: Minimum energy control of 2D systems in Hilbert spaces. Syst. Sci. 9(1–2), 33–42 (1983)
Klamka, J.: Controllability and minimum energy control problem of fractional discrete-time systems. In: Baleanu, D., Guvenc, Z.B., Tenreiro Machado, J.A. (eds.) New Trends in Nanotechnology and Fractional Calculus Applications, pp. 503–509. Springer, Dordrecht (2010)
Klamka, J.: Relative controllability and minimum energy control of linear systems with distributed delays in control. IEEE Trans. Autom. Contr. 21(4), 594–595 (1976)
Kaczorek, T., Klamka, J.: Minimum energy control of 2D linear systems with variable coefficients. Int. J. Control 44(3), 645–650 (1986)
Solteiro Pires, E.J., Tenreiro Machado, J.A., Moura Oliveira, P.B.: Functional dynamics in genetic algorithms. In: Workshop on Fractional Differentiation and Its Application, vol. 2, pp. 414–419 (2006)
Brockett, R.W.: Nonlinear systems and differential geometry. Proc. IEEE 64(1), 61–71 (1976)
Isidori, A.: Nonlinear Control Systems. Springer, Berlin (1989)
Marino, R., Tomei, P.: Nonlinear Control Design – Geometric, Adaptive, and Robust. Prentice Hall, London (1995)
Aguiller, J.L.M., Garcia, R.A., D’Attellis, C.E.: Exact linearization of nonlinear systems: trajectory tracking with bounded control and state constrains. In: Proceedings of the 38th Midwest Symposium on Circuits and Systems, Rio de Janeiro, pp. 620–622 (1995)
Charlet, B., Levine, J., Marino, R.: Sufficient conditions for dynamic state feedback linearization. SIAM J. Contr. Optim. 29(1), 38–57 (1991)
Daizhan, C., Tzyh-Jong, T., Isidori, A.: Global external linearization of nonlinear systems via feedback. IEEE Trans. Autom. Control 30, 808–811 (1985)
Fang, B., Kelkar, A.G.: Exact linearization of nonlinear systems by time scale transformation. In: Proceedings of the American Control Conference, Denver-Colorado, pp. 3555–3560 (2003)
Jakubczyk, B.: Introduction to Geometric Nonlinear Control; Controllability and Lie Bracket. Summer Schools on Mathematical Control Theory, Trieste (2001)
Jakubczyk, B., Respondek, W.: On linearization of control systems. Bull. Pol. Acad. Sci. Tech. 28, 517–521 (1980)
Melham, K., Saad, M., Abou, S.C.: Linearization by redundancy and stabilization of nonlinear dynamical systems: a state transformation approach. In: IEEE International Symposium on Industrial Electronics, pp. 61–68 (2009)
Taylor, J.H., Antoniotti, A.J.: Linearization algorithms for computer-aided control engineering. Control Syst. Mag. 13, 58–64 (1993)
Khalil, R., Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)
Acknowledgment
This work was supported by National Science Centre in Poland under work No. 2017/27/B/ST7/02443.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kaczorek, T. (2020). Linearization of Fractional Nonlinear Systems by State-Feedbacks. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2020: Towards Industry of the Future. AUTOMATION 2020. Advances in Intelligent Systems and Computing, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-40971-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-40971-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40970-8
Online ISBN: 978-3-030-40971-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)