Abstract
Monitoring uterine contractions is essential during pregnancy and labor to obtain information on time-to-delivery and maternal and fetal wellbeing Intrauterine pressure (IUP) is considered the “gold standard” to monitor uterine activity, though it requires membrane rupture and is highly invasive. Considering that uterine mechanical activity is a direct consequence of uterine myoelectrical activity, IUP signal can be non-invasively estimated from abdominal electrohysterogram (EHG) recordings. Previous works have reported EHG-based IUP estimates with linear parameters as root-mean-square or Teager energy. Due to non-linear nature of biological processes, the aim of this study was to test the performance of different non-linear EHG parameters to estimate IUP signal. Simultaneous EHG and IUP recordings were conducted in 17 women during labour. Teager energy (TE), Sample entropy (SampEn), Spectral entropy (SpEn), Lempel-Ziv (LZ), and Poincaré parameters: SD1, SD2, SDRR and SD1/SD2 were computed from the EHG. Different window lengths for computation and for a smoothing moving average filter were tested. Monovariable linear regression models were used to obtain IUP estimates. The best results were obtained with TE and SD1, both computed and filtered with windows of 5 s and 20 s, respectively. In the latter case, the RMSerror was 12.25 ± 4.03 mmHg, which points that non-linear EHG parameters can provide relevant information for non-invasive uterine activity monitoring.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Euliano, T.Y., Nguyen, M.T., Darmanjian, S., McGorray, S.P., Euliano, N., Onkala, A., et al.: Monitoring uterine activity during labor: a comparison of 3 methods. Am. J. Obstet. Gynecol. 208(66), e1–e6 (2013). https://doi.org/10.1016/j.ajog.2012.10.873
Hassan, M.: Analysis of the propagation of uterine electrical activity applied to predict preterm labor. Bioengineering. UTC Compiègne; Reykjavik University (2011). English. fftel-01226162f
Benalcazar-Parra, C., Montfort-Orti, R., Ye-Lin, Y., Alberola-Rubio, J., Marin, A.P., Mas-Cabo, J., et al.: Characterization of uterine response to misoprostol based on electrohysterogram. In: Proceedings of 10th International Joint Conference on Biomedical Engineering and System Technology. SCITEPRESS – Science and Technology Publications (2017). https://doi.org/10.5220/0006146700640069
Kaiser, J.F.: On a simple algorithm to calculate the “energy” of a signal. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 381–384. IEEE (1990). https://doi.org/10.1109/icassp.1990.115702
Richman, J.S., Moorman, J.R.: Physiological time-series analisis using approximate entropy and sample Entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000). https://doi.org/10.1152/ajpheart.2000.278.6.h2039
Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)
Aboy, M., Hornero, R., Abásolo, D., Álvarez, D.: Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans. Biomed. Eng. 53(11), 2282–2288 (2006). https://doi.org/10.1109/tbme.2006.883696
Tayel, M.B., AlSaba, E.I.: Poincaré plot for heart rate variability. Int. J. Biomed. Biol. Eng. 9(9) (2015). https://waset.org/Publication/10002615
Benalcazar-Parra, C., Sempere, C., Marin, A.P.: Improvement of non-invasive intrauterine pressure estimation based on electrohysterogram. In: XXXV Congreso Anual de la Sociedad Española de Ingeniería Biomédica, Bilbao, pp. 225–238 (2017)
Benalcazar-Parra, C., Ye-Lin, Y., Garcia-Casado, J., Monfort-Orti, R., et al.: Electrohysterographic characterization of the uterine myoelectrical response to labor induction drugs. Med. Eng. Phys. 56, 27–35 (2018)
Di Marco, L.Y., et al.: Recurring patterns in stationary intervals of abdominal uterine eletromyograms during gestation. Med. Biol. Eng. Comput. 52, 707–716 (2014)
Marple, L.: Resolution of conventional fourier, autoregressive, and special ARMA methods of spectrum analysis. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1977, pp. 74–77. IEEE (1977). https://doi.org/10.1109/icassp.1977.1170219
Acknowledgment
Nonetheless, this research has received funding from the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (DPI2015-68397-R), the Generalitat Valenciana (GV/2018/104) and UPV-IIS La Fe (UPV_FE-2018-C03). These public entities provided only financial support and did not influence at all in the design, development or publication of the work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
The authors have no conflict of interest in terms of personal financial interests or employment.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Albaladejo-Belmonte, M. et al. (2020). Non-invasive Intrauterine Pressure Estimation Based on Nonlinear Parameters Computed from the Electrohysterogram. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-31635-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31634-1
Online ISBN: 978-3-030-31635-8
eBook Packages: EngineeringEngineering (R0)