Abstract
This chapter presents and analyzes the Whale Optimization Algorithm. The inspiration of this algorithm is first discussed in details, which is the bubble-net foraging behaviour of humpback whales in nature. The mathematical models of this algorithm is then discussed. Due to the large number of applications, a brief literature review of WOA is provided including recent works on the algorithms itself and its applications. The chapter also tests the performance of WOA on several test functions and a real case study in the field of photonic crystal filter. The qualitative and quantitative results show that merits of this algorithm for solving a wide range of challenging problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760–766). Boston, MA: Springer.
Dorigo, M., & Birattari, M. (2011). Ant colony optimization. In Encyclopedia of machine learning (pp. 36–39). Boston, MA: Springer.
Tan, K. C., Chiam, S. C., Mamun, A. A., & Goh, C. K. (2009). Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. European Journal of Operational Research, 197(2), 701–713.
Chitsaz, H., & Aminisharifabad, M. (2015). Exact learning of rna energy parameters from structure. Journal of Computational Biology, 22(6), 463–473.
Aminisharifabad, M., Yang, Q. & Wu, X. (2018). A penalized autologistic regression with application for modeling the microstructure of dual-phase high strength steel. Journal of Quality Technology (in-press).
Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.
Oliva, D., El Aziz, M. A., & Hassanien, A. E. (2017). Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Applied Energy, 200, 141–154.
Sun, W. Z., & Wang, J. S. (2017). Elman neural network soft-sensor model of conversion velocity in polymerization process optimized by chaos whale optimization algorithm. IEEE Access, 5, 13062–13076.
Kaur, G., & Arora, S. (2018). Chaotic whale optimization algorithm. Journal of Computational Design and Engineering.
Prasad, D., Mukherjee, A., & Mukherjee, V. (2017). Transient stability constrained optimal power flow using chaotic whale optimization algorithm. In Handbook of neural computation (pp. 311–332).
Trivedi, I. N., Pradeep, J., Narottam, J., Arvind, K., & Dilip, L. (2016). Novel adaptive whale optimization algorithm for global optimization. Indian Journal of Science and Technology, 9(38).
Hu, H., Bai, Y., & Xu, T. (2016). A whale optimization algorithm with inertia weight. WSEAS Transactions on Computers, 15, 319–326.
Emary, E., Zawbaa, H. M., & Salam, M. A. (2017). A proposed whale search algorithm with adaptive random walk. In 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP) (pp. 171–177). IEEE.
Elaziz, M. A., & Oliva, D. (2018). Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Conversion and Management, 171, 1843–1859.
Ling, Y., Zhou, Y., & Luo, Q. (2017). Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access, 5(99), 6168–6186.
Abdel-Basset, M., Abdle-Fatah, L., & Sangaiah, A. K. (2018). An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment. Cluster Computing, 1–16.
Sauber, A. M., Nasef, M. M., Houssein, E. H., & Hassanien, A. E. (2018). Parallel whale optimization algorithm for solving constrained and unconstrained optimization problems. arXiv:1807.09217.
Eid, H. F. (2018). Binary whale optimisation: an effective swarm algorithm for feature selection. International Journal of Metaheuristics, 7(1), 67–79.
Hussien, A. G., Houssein, E. H., & Hassanien, A. E. (2017, December). A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 166–172). IEEE.
Reddy K, S., Panwar, L., Panigrahi, B. K., & Kumar, R. (2018). Binary whale optimization algorithm: A new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets. Engineering Optimization, 1–21.
Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2019). S-shaped binary whale optimization algorithm for feature selection. In Recent trends in signal and image processing (pp. 79–87). Singapore: Springer.
Wang, J., Du, P., Niu, T., & Yang, W. (2017). A novel hybrid system based on a new proposed algorithm-multi-objective whale optimization algorithm for wind speed forecasting. Applied Energy, 208, 344–360.
El Aziz, M. A., Ewees, A. A., & Hassanien, A. E. (2018). Multi-objective whale optimization algorithm for content-based image retrieval. Multimedia Tools and Applications, 1–38.
El Aziz, M. A., Ewees, A. A., Hassanien, A. E., Mudhsh, M., & Xiong, S. (2018). Multi-objective whale optimization algorithm for multilevel thresholding segmentation. In Advances in soft computing and machine learning in image processing (pp. 23–39). Cham: Springer.
Jangir, P., & Jangir, N. (2017). Non-dominated sorting whale optimization algorithm (NSWOA): A multi-objective optimization algorithm for solving engineering design problems. Global Journal of Research In Engineering.
Xu, Z., Yu, Y., Yachi, H., Ji, J., Todo, Y., & Gao, S. (2018). A novel memetic whale optimization algorithm for optimization. In International Conference on Swarm Intelligence (pp. 384–396). Cham: Springer.
Trivedi, I. N., Jangir, P., Kumar, A., Jangir, N., & Totlani, R. (2018). A novel hybrid PSOWOA algorithm for global numerical functions optimization. In Advances in Computer and Computational Sciences (pp. 53–60). Singapore: Springer.
Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017). MPPT in dynamic condition of partially shaded PV system by using WODE technique. IEEE Transactions on Sustainable Energy, 8(3), 1204–1214.
Jadhav, A. N., & Gomathi, N. (2017). WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alexandria Engineering Journal.
Mohamed, F., AbdelNasser, M., Mahmoud, K., & Kamel, S. (2017). Accurate economic dispatch solution using hybrid whale-wolf optimization method. In 2017 Nineteenth International Middle East Power Systems Conference (MEPCON) (pp. 922–927). IEEE.
Singh, N., & Hachimi, H. (2018). A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization. Mathematical and Computational Applications, 23(1), 14.
Kaveh, A., & Rastegar Moghaddam, M. (2018). A hybrid WOA-CBO algorithm for construction site layout planning problem. Scientia Iranica, 25(3), 1094–1104.
Khalilpourazari, S., & Khalilpourazary, S. (2018). SCWOA: An efficient hybrid algorithm for parameter optimization of multi-pass milling process. Journal of Industrial and Production Engineering, 35(3), 135–147.
Sai, L., & Huajing, F. (2017). A WOA-based algorithm for parameter optimization of support vector regression and its application to condition prognostics. In 2017 36th Chinese Control Conference (CCC) (pp. 7345–7350). IEEE.
Bhesdadiya, R., Jangir, P., Jangir, N., Trivedi, I. N., & Ladumor, D. (2016). Training multi-layer perceptron in neural network using whale optimization algorithm. Indian Journal of Science and Technology, 9(19), 28–36.
Lai, K. H., Zainuddin, Z., & Ong, P. (2017). A study on the performance comparison of metaheuristic algorithms on the learning of neural networks. In AIP Conference Proceedings (Vol. 1870, No. 1, p. 040039). AIP Publishing.
Yadav, H., Lithore, U., & Agrawal, N. (2017). An enhancement of whale optimization algorithm using ANN for routing optimization in Ad-hoc network. International Journal of Advanced Technology and Engineering Exploration, 4(36), 161–167.
Chen, Y., Vepa, R., & Shaheed, M. H. (2018). Enhanced and speedy energy extraction from a scaled-up pressure retarded osmosis process with a whale optimization based maximum power point tracking. Energy, 153, 618–627.
Mehne, H. H., & Mirjalili, S. (2018). A parallel numerical method for solving optimal control problems based on whale optimization algorithm. Knowledge-Based Systems, 151, 114–123.
Saha, A., & Saikia, L. C. (2018). Performance analysis of combination of ultra-capacitor and superconducting magnetic energy storage in a thermal-gas AGC system with utilization of whale optimization algorithm optimized cascade controller. Journal of Renewable and Sustainable Energy, 10(1), 014103.
Algabalawy, M. A., Abdelaziz, A. Y., Mekhamer, S. F., & Aleem, S. H. A. (2018). Considerations on optimal design of hybrid power generation systems using whale and sine cosine optimization algorithms. Journal of Electrical Systems and Information Technology.
Hasanien, H. M. (2018). Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm. Electric Power Systems Research, 157, 168–176.
Sarkar, P., Laskar, N. M., Nath, S., Baishnab, K. L., & Chanda, S. (2018). Offset voltage minimization based circuit sizing of CMOS operational amplifier using whale optimization algorithm. Journal of Information and Optimization Sciences, 39(1), 83–98.
Parambanchary, D., & Rao, V. M. WOA-NN: a decision algorithm for vertical handover in heterogeneous networks. Wireless Networks 1–16.
Jadhav, A. R., & Shankar, T. (2017). Whale optimization based energy-efficient cluster head selection algorithm for wireless sensor networks. arXiv:1711.09389.
Kumawat, I. R., Nanda, S. J., & Maddila, R. K. (2018). Positioning LED panel for uniform illuminance in indoor VLC system using whale optimization. In Optical and Wireless Technologies (pp. 131–139). Singapore: Springer.
Alomari, A., Phillips, W., Aslam, N., & Comeau, F. (2018). Swarm intelligence optimization techniques for obstacle-avoidance mobility-assisted localization in wireless sensor networks. IEEE Access, 6, 22368–22385.
Rewadkar, D., & Doye, D. (2018). Multiobjective autoregressive whale optimization for traffic-aware routing in urban VANET. IET Information Security.
Yadav, H., Lilhore, U., & Agrawal, N. (2017). A survey: whale optimization algorithm for route optimization problems. Wireless Communication, 9(5), 105–108.
Rewadkar, D., & Doye, D. (2018). Adaptive-ARW: adaptive autoregressive whale optimization algorithm for traffic-aware routing in urban VANET. International Journal of Computer Sciences and Engineering, 6(2), 303–312.
Sharma, M., & Garg, R. (2017). Energy-aware whale-optmized task scheduler in cloud computing. In 2017 International Conference on Intelligent Sustainable Systems (ICISS) (pp. 121–126). IEEE.
Reddy, G. N., & Kumar, S. P. (2017). Multi objective task scheduling algorithm for cloud computing using whale optimization technique. In International Conference on Next Generation Computing Technologies (pp. 286–297). Singapore: Springer.
Sreenu, K., & Sreelatha, M. (2017). W-Scheduler: whale optimization for task scheduling in cloud computing. Cluster Computing, 1–12.
Mousavirad, S. J., & Ebrahimpour-Komleh, H. (2017). Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms. Evolutionary Intelligence, 10(1–2), 45–75.
Sahlol, A. T., & Hassanien, A. E. (2017). Bio-inspired optimization algorithms for Arabic handwritten characters. In Handbook of research on machine learning innovations and trends (pp. 897–914). IGI Global.
Hassan, G., & Hassanien, A. E. (2018). Retinal fundus vasculature multilevel segmentation using whale optimization algorithm. Signal, Image and Video Processing, 12(2), 263–270.
Hassanien, A. E., Elfattah, M. A., Aboulenin, S., Schaefer, G., Zhu, S. Y., & Korovin, I. (2016). Historic handwritten manuscript binarisation using whale optimisation. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 003842–003846). IEEE.
Zhang, C., Fu, X., Peng, S., & Wang, Y. (2018). Linear unequally spaced array synthesis for sidelobe suppression with different aperture constraints using whale optimization algorithm. In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE.
Yuan, P., Guo, C., Zheng, Q., & Ding, J. (2018). Sidelobe suppression with constraint for MIMO radar via chaotic whale optimisation. Electronics Letters, 54(5), 311–313.
Pathak, V. K., & Singh, A. K. (2017). Accuracy control of contactless laser sensor system using whale optimization algorithm and moth-flame optimization. tm-Technisches Messen, 84(11), 734–746.
Reddy, A. S., & Reddy, M. D. (2018). Application of whale optimization algorithm for distribution feeder reconfiguration. Journal on Electrical Engineering, 11(3).
Zhang, C., Fu, X., Ligthart, L. P., Peng, S., & Xie, M. (2018). Synthesis of broadside linear aperiodic arrays with sidelobe suppression and null steering using whale optimization algorithm. IEEE Antennas and Wireless Propagation Letters, 17(2), 347–350.
Yuan, P., Guo, C., Ding, J., & Qu, Y. (2017). Synthesis of nonuniform sparse linear array antenna using whale optimization algorithm. In 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP) (pp. 1–3). IEEE.
Nasiri, J., & Khiyabani, F. M. (2018). A whale optimization algorithm (WOA) approach for clustering. Cogent Mathematics & Statistics, 1483565.
Emmanuel, W. S., & Minija, S. J. (2018). Fuzzy clustering and Whale-based neural network to food recognition and calorie estimation for daily dietary assessment. Sādhanā, 43(5), 78.
Al-Janabi, T. A., & Al-Raweshidy, H. S. (2017). Efficient whale optimisation algorithm-based SDN clustering for IoT focused on node density. In 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net) (pp. 1–6). IEEE.
Osama, S., Darwish, A., Houssein, E. H., Hassanien, A. E., Fahmy, A. A., & Mahrous, A. (2017). Long-term wind speed prediction based on optimized support vector regression. In 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 191–196). IEEE.
Barham, R., & Aljarah, I. (2017). Link Prediction Based on Whale Optimization Algorithm. In 2017 International Conference on New Trends in Computing Sciences (ICTCS) (pp. 55–60). IEEE.
Osama, S., Houssein, E. H., Hassanien, A. E., & Fahmy, A. A. (2017). Forecast of wind speed based on whale optimization algorithm. In Proceedings of the 1st International Conference on Internet of Things and Machine Learning (p. 62). ACM.
Desuky, A. S. (2017). Two enhancement levels for male fertility rate categorization using whale optimization and pegasos algorithms. Australian Journal of Basic and Applied Sciences, 11(7), 78–83.
Sherin, B. M., & Supriya, M. H. (2017). WOA based selection and parameter optimization of SVM kernel function for underwater target classification. International Journal of Advanced Research in Computer Science, 8(3).
Elazab, O. S., Hasanien, H. M., Elgendy, M. A., & Abdeen, A. M. (2017). Whale optimisation algorithm for photovoltaic model identification. The Journal of Engineering, 2017(13), 1906–1911.
Yan, Z., Sha, J., Liu, B., Tian, W., & Lu, J. (2018). An ameliorative whale optimization algorithm for multi-objective optimal allocation of water resources in Handan, China. Water, 10(1), 87.
AlaM, A. Z., Faris, H., & Hassonah, M. A. (2018). Evolving support vector machines using whale optimization algorithm for spam profiles detection on online social networks in different lingual contexts. Knowledge-Based Systems, 153, 91–104.
Hegazy, A. E., Makhlouf, M. A., & El-Tawel, G. S. (2018). Dimensionality reduction using an improved whale optimization algorithm for data classification. International Journal of Modern Education and Computer Science, 10(7), 37.
Zamani, H., & Nadimi-Shahraki, M. H. (2016). Feature selection based on whale optimization algorithm for diseases diagnosis. International Journal of Computer Science and Information Security, 14(9), 1243.
Mafarja, M., & Mirjalili, S. (2018). Whale optimization approaches for wrapper feature selection. Applied Soft Computing, 62, 441–453.
Ruiye, J., Tao, C., Songyan, W., & Ming, Y. (2018, March). Order whale optimization algorithm in rendezvous orbit design. In 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI) (pp. 97–102). IEEE.
Canayaz, M., & Demir, M. (2017). Feature selection with the whale optimization algorithm and artificial neural network. In 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) (pp. 1—5). IEEE.
Sharawi, M., Zawbaa, H. M., & Emary, E. (2017). Feature selection approach based on whale optimization algorithm. In 2017 Ninth International Conference on Advanced Computational Intelligence (ICACI) (pp. 163–168). IEEE.
Yu, Y., Wang, H., Li, N., Su, Z., & Wu, J. (2017). Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer. Aerospace Science and Technology, 69, 149–160.
Saidala, R. K., & Devarakonda, N. (2018). Improved whale optimization algorithm case study: Clinical data of anaemic pregnant woman. In Data engineering and intelligent computing (pp. 271–281). Singapore: Springer.
Sayed, G. I., Darwish, A., Hassanien, A. E., & Pan, J. S. (2016). Breast cancer diagnosis approach based on meta-heuristic optimization algorithm inspired by the bubble-net hunting strategy of whales. In International Conference on Genetic and Evolutionary Computing (pp. 306–313). Cham: Springer.
Mostafa, A., Hassanien, A. E., Houseni, M., & Hefny, H. (2017). Liver segmentation in MRI images based on whale optimization algorithm. Multimedia Tools and Applications, 76(23), 24931–24954.
Tharwat, A., Moemen, Y. S., & Hassanien, A. E. (2017). Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. Journal of biomedical informatics, 68, 132–149.
Wu, J., Wang, H., Li, N., Yao, P., Huang, Y., & Yang, H. (2018). Path planning for solar-powered UAV in urban environment. Neurocomputing, 275, 2055–2065.
Dao, T. K., Pan, T. S., & Pan, J. S. (2016). A multi-objective optimal mobile robot path planning based on whale optimization algorithm. In 2016 IEEE 13th International Conference on Signal Processing (ICSP) (pp. 337–342). IEEE.
Kaveh, A., & Ghazaan, M. I. (2017). Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mechanics Based Design of Structures and Machines, 45(3), 345–362.
Kaveh, A. (2017). Sizing optimization of skeletal structures using the enhanced whale optimization algorithm. In Applications of metaheuristic optimization algorithms in civil engineering (pp. 47–69). Cham: Springer.
Prakash, D. B., & Lakshminarayana, C. (2017). Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alexandria Engineering Journal, 56(4), 499–509.
Kumar, A., Bhalla, V., Kumar, P., Bhardwaj, T., & Jangir, N. (2018). Whale optimization algorithm for constrained economic load dispatch problems-A cost optimization. In Ambient Communications and Computer Systems (pp. 353–366). Singapore: Springer.
Khalilpourazari, S., Pasandideh, S. H. R., & Ghodratnama, A. (2019). Robust possibilistic programming for multi-item EOQ model with defective supply batches: Whale optimization and water cycle algorithms. Neural Computing and Applications, (in-press).
Zhang, X., Liu, Z., Miao, Q., & Wang, L. (2018). Bearing fault diagnosis using a whale optimization algorithm-optimized orthogonal matching pursuit with a combined timefrequency atom dictionary. Mechanical Systems and Signal Processing, 107, 29–42.
Abdel-Basset, M., Manogaran, G., El-Shahat, D., & Mirjalili, S. (2018). A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Future Generation Computer Systems, 85, 129–145.
Abdel-Basset, M., Manogaran, G., Abdel-Fatah, L., & Mirjalili, S. (2018). An improved nature inspired meta-heuristic algorithm for 1-D bin packing problems. Personal and Ubiquitous Computing, 1–16.
Horng, M. F., Dao, T. K., & Shieh, C. S. (2017). A Multi-objective optimal vehicle fuel consumption based on whale optimization algorithm. In Advances in Intelligent Information Hiding and Multimedia Signal Processing (pp. 371–380). Cham: Springer.
Masadeh, R., Alzaqebah, A., & Sharieh, A. (2018). Whale optimization algorithm for solving the maximum flow problem. Journal of Theoretical & Applied Information Technology, 96(8)
Fu, M., Liao, J., Shao, Z., Marko, M., Zhang, Y., Wang, X., et al. (2016). Finely engineered slow light photonic crystal waveguides for efficient wideband wavelength-independent higher-order temporal solitons. Applied Optics, 55(14), 3740–3745.
Jiang, L., Wu, H., Jia, W., & Li, X. (2013). Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Optik-International Journal for Light and Electron Optics, 124(14), 1721–1725.
Mirjalili, S. M., Mirjalili, S., & Mirjalili, S. Z. (2015). How to design photonic crystal LEDs with artificial intelligence techniques. Electronics Letters, 51(18), 1437–1439.
Safdari, M. J., Mirjalili, S. M., Bianucci, P., & Zhang, X. (2018). Multi-objective optimization framework for designing photonic crystal sensors. Applied Optics, 57(8), 1950–1957.
Mirjalili, S. M., Merikhi, B., Mirjalili, S. Z., Zoghi, M., & Mirjalili, S. (2017). Multi-objective versus single-objective optimization frameworks for designing photonic crystal filters. Applied Optics, 56(34), 9444–9451.
Mirjalili, S. M., & Mirjalili, S. Z. (2017). Single-objective optimization framework for designing photonic crystal filters. Neural Computing Applications, 28(6), 1463–1469.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mirjalili, S., Mirjalili, S.M., Saremi, S., Mirjalili, S. (2020). Whale Optimization Algorithm: Theory, Literature Review, and Application in Designing Photonic Crystal Filters. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds) Nature-Inspired Optimizers. Studies in Computational Intelligence, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-030-12127-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-12127-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12126-6
Online ISBN: 978-3-030-12127-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)