Nothing Special   »   [go: up one dir, main page]

Skip to main content

An End-to-End Entity and Relation Extraction Network with Multi-head Attention

  • Conference paper
  • First Online:
Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (CCL 2018, NLP-NABD 2018)

Abstract

Relation extraction is an important semantic processing task in natural language processing. The state-of-the-art systems usually rely on elaborately designed features, which are usually time-consuming and may lead to poor generalization. Besides, most existing systems adopt pipeline methods, which treat the task as two separated tasks, i.e., named entity recognition and relation extraction. However, the pipeline methods suffer two problems: (1) Pipeline model over-simplifies the task to two independent parts. (2) The errors will be accumulated from named entity recognition to relation extraction. Therefore, we present a novel joint model for entities and relations extraction based on multi-head attention, which avoids the problems in the pipeline methods and reduces the dependence on features engineering. The experimental results show that our model achieves good performance without extra features. Our model reaches an F-score of 85.7% on SemEval-2010 relation extraction task 8, which has competitive performance without extra feature compared with previous joint models. On publication, codes will be made publicly available.

The paper is supported by the National Natural Science Foundation of China under No. 61672126.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: Proceedings of COLING, pp. 2335–2344 (2014)

    Google Scholar 

  2. Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H., Jin, Z.: Classifying relations via long short term memory networks along shortest dependency paths. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1785–1794 (2015)

    Google Scholar 

  3. Zhou, P., Shi, W., Tian, J., et al.: Attention-based Bidirectional Long Short-Term Memory Networks for relation classification. In: Meeting of the Association for Computational Linguistics, pp. 207–212 (2016)

    Google Scholar 

  4. Li, Q., Ji, H.: Incremental joint extraction of entity mentions and relations. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 402–412 (2014)

    Google Scholar 

  5. Miwa, M., Bansal, M.: End-to-End relation extraction using LSTMs on sequences and tree structures. In: Meeting of the Association for Computational Linguistics, pp. 1105–1116 (2016)

    Google Scholar 

  6. Miwa, M., Sasaki, Y.: Modeling joint entity and relation extraction with table representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1858–1869 (2014)

    Google Scholar 

  7. Katiyar, A., Cardie, C.: Going out on a limb: joint extraction of entity mentions and relations without dependency trees. In: Meeting of the Association for Computational Linguistics, pp. 917–928 (2017)

    Google Scholar 

  8. Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., Xu, B.: Joint extraction of entities and relations based on a novel tagging scheme. arXiv preprint arXiv:1706.05075 (2017)

  9. Hendrickx, I., et al.: Semeval-2010 task 8: multi-way classification of semantic relations between pairs of nominals. In: Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions, pp. 94–99 (2009)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML, vol. 3, pp. 282–289 (2001)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, D., Wang, D.: Relation classification via recurrent neural network. arXiv preprint arXiv:1508.01006 (2015)

  16. Santos, C.N.D., Xiang, B., Zhou, B.: Classifying relations by ranking with convolutional neural networks. arXiv preprint arXiv:1504.06580 (2015)

  17. Xu, K., Feng, Y., Huang, S., Zhao, D.: Semantic relation classification via convolutional neural networks with simple negative sampling. arXiv preprint arXiv:1506.07650 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishuang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Guo, Y., Qian, S., Zhou, A. (2018). An End-to-End Entity and Relation Extraction Network with Multi-head Attention. In: Sun, M., Liu, T., Wang, X., Liu, Z., Liu, Y. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. CCL NLP-NABD 2018 2018. Lecture Notes in Computer Science(), vol 11221. Springer, Cham. https://doi.org/10.1007/978-3-030-01716-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01716-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01715-6

  • Online ISBN: 978-3-030-01716-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics