Abstract
Relation extraction is an important semantic processing task in natural language processing. The state-of-the-art systems usually rely on elaborately designed features, which are usually time-consuming and may lead to poor generalization. Besides, most existing systems adopt pipeline methods, which treat the task as two separated tasks, i.e., named entity recognition and relation extraction. However, the pipeline methods suffer two problems: (1) Pipeline model over-simplifies the task to two independent parts. (2) The errors will be accumulated from named entity recognition to relation extraction. Therefore, we present a novel joint model for entities and relations extraction based on multi-head attention, which avoids the problems in the pipeline methods and reduces the dependence on features engineering. The experimental results show that our model achieves good performance without extra features. Our model reaches an F-score of 85.7% on SemEval-2010 relation extraction task 8, which has competitive performance without extra feature compared with previous joint models. On publication, codes will be made publicly available.
The paper is supported by the National Natural Science Foundation of China under No. 61672126.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: Proceedings of COLING, pp. 2335–2344 (2014)
Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H., Jin, Z.: Classifying relations via long short term memory networks along shortest dependency paths. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1785–1794 (2015)
Zhou, P., Shi, W., Tian, J., et al.: Attention-based Bidirectional Long Short-Term Memory Networks for relation classification. In: Meeting of the Association for Computational Linguistics, pp. 207–212 (2016)
Li, Q., Ji, H.: Incremental joint extraction of entity mentions and relations. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 402–412 (2014)
Miwa, M., Bansal, M.: End-to-End relation extraction using LSTMs on sequences and tree structures. In: Meeting of the Association for Computational Linguistics, pp. 1105–1116 (2016)
Miwa, M., Sasaki, Y.: Modeling joint entity and relation extraction with table representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1858–1869 (2014)
Katiyar, A., Cardie, C.: Going out on a limb: joint extraction of entity mentions and relations without dependency trees. In: Meeting of the Association for Computational Linguistics, pp. 917–928 (2017)
Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., Xu, B.: Joint extraction of entities and relations based on a novel tagging scheme. arXiv preprint arXiv:1706.05075 (2017)
Hendrickx, I., et al.: Semeval-2010 task 8: multi-way classification of semantic relations between pairs of nominals. In: Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions, pp. 94–99 (2009)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML, vol. 3, pp. 282–289 (2001)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Zhang, D., Wang, D.: Relation classification via recurrent neural network. arXiv preprint arXiv:1508.01006 (2015)
Santos, C.N.D., Xiang, B., Zhou, B.: Classifying relations by ranking with convolutional neural networks. arXiv preprint arXiv:1504.06580 (2015)
Xu, K., Feng, Y., Huang, S., Zhao, D.: Semantic relation classification via convolutional neural networks with simple negative sampling. arXiv preprint arXiv:1506.07650 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, L., Guo, Y., Qian, S., Zhou, A. (2018). An End-to-End Entity and Relation Extraction Network with Multi-head Attention. In: Sun, M., Liu, T., Wang, X., Liu, Z., Liu, Y. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. CCL NLP-NABD 2018 2018. Lecture Notes in Computer Science(), vol 11221. Springer, Cham. https://doi.org/10.1007/978-3-030-01716-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-01716-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01715-6
Online ISBN: 978-3-030-01716-3
eBook Packages: Computer ScienceComputer Science (R0)