Abstract
Particle filtering in high dimensional state-spaces can be inefficient because a large number of samples is needed to represent the posterior. A standard technique to increase the efficiency of sampling techniques is to reduce the size of the state space by marginalizing out some of the variables analytically; this is called Rao-Blackwellisation (Casella and Robert 1996). Combining these two techniques results in Rao-Blackwellised particle filtering (RBPF) (Doucet 1998, Doucet, de Freitas, Murphy and Russell 2000). In this chapter, we explain RBPF, discuss when it can be used, and give a detailed example of its application to the problem of map learning for a mobile robot, which has a very large (~ 2100) discrete state space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer Science+Business Media New York
About this chapter
Cite this chapter
Murphy, K., Russell, S. (2001). Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. In: Doucet, A., de Freitas, N., Gordon, N. (eds) Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3437-9_24
Download citation
DOI: https://doi.org/10.1007/978-1-4757-3437-9_24
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-2887-0
Online ISBN: 978-1-4757-3437-9
eBook Packages: Springer Book Archive