Nothing Special   »   [go: up one dir, main page]

Skip to main content

Image Encryption and Chaotic Cellular Neural Network

  • Chapter
  • First Online:
Machine Learning in Cyber Trust
  • 2337 Accesses

Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez G, Li S J (2006) Some basic cryptographic requirements for chaos-based crypto-systems. Int J Bifurcation Chaos 16:2129-2151

    Article  MathSciNet  Google Scholar 

  2. Amigo J M, Kocarev L, Szczepanski J (2007) Theory and practice of chaotic cryptography. Phys Lett A 366: 211-216

    Article  Google Scholar 

  3. Arthur T B, Kan Y (2001) Magic ‘squares’ indeed. Math Gazette 108:152-156

    Google Scholar 

  4. Baptista M S (1998) Cryptography with chaos. Phys Lett A 240:50-54

    Article  MATH  MathSciNet  Google Scholar 

  5. Behnia S, Akhshani A, Mahmodi H (2008) A novel algorithm for image encryption based on mixture of chaotic map. Chaos, Solitons, Fractals 35:408-419

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourbakis N (1997) Image data compression encryption using G-SCAN pattern. Proc IEEE Conf SMC, 1117-1120

    Google Scholar 

  7. Bourbakis N, Alexopoulos C (1992) Picture data encryption using SCAN patterns. Pattern Recogn 25:567-581

    Article  Google Scholar 

  8. Bourbakis N, Alexopoulos C (1999) A fractal based image processing language - formal modeling. Pattern Recogn 32:317-338

    Article  Google Scholar 

  9. Chang H T (2004) Arbitrary affine transformation and their composition effects for two dimensional fractal sets. Image Vis Comput 22:1117-1127

    Article  Google Scholar 

  10. Charilaos C, Athanassios S, Touradj E (2000) The JPEG2000 still image coding system. IEEE Trans Consum Electron 46:1103-1127

    Article  Google Scholar 

  11. Chen G R, Mao Y B, Chui C K (2004) A symmetric image encryption based on 3D chaotic maps. Chaos, Solitons, Fractals 21:749-761

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen H Z, Dai M D, Wu X Y (1994) Bifurcation and chaos in discrete-time cellular neural networks. 3rd IEEE Int Wkshp Cellular Neural Networks and Their Applicat, CNNA '94, 309-315

    Google Scholar 

  13. Cheng H, Li X (2000) Partial encryption of compressed images and videos. IEEE Trans Sig Proc 48:2439-2451

    Article  Google Scholar 

  14. Chua L O, Hasler M, Moschytz G S (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circ Syst I 42:559-577

    Article  MathSciNet  Google Scholar 

  15. Chua L O, Yang L (1988a) Cellular neural network: theory. IEEE Trans Circ Syst 35:1257-1272

    Article  MATH  MathSciNet  Google Scholar 

  16. Chua L O, Yang L (1988b) Cellular neural network: applications. IEEE Trans Circ Syst 35:1273-1290

    Article  MathSciNet  Google Scholar 

  17. Clarke R J (1995) Digital compression of still images and video. Academic Press, New York

    Google Scholar 

  18. Cox I J, Kilian J, Leighton F T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6:1673-1687

    Article  Google Scholar 

  19. Csapodi M, Vandewalle J, Roska T (1998) High speed calculation of cryptographic hash functions by CNN Chips. 1998 Fifth IEEE Int Wkshp Cellular Neural Networks and Their Applicat, CNNA '98, 14-17

    Google Scholar 

  20. Dang P P, Chau P M (2000) Image encryption for secure Internet multimedia applications. IEEE Trans Consum Electron 46:395-403

    Article  Google Scholar 

  21. Fan Z, Josef A N (1991) A chaotic attractor with cellular neural networks. IEEE Trans Circ Syst 38:811-812

    Article  Google Scholar 

  22. Fridrich J (1997) Image encryption based on chaotic maps. Proc IEEE Int Conf Syst Man Cybern, 1105-1110

    Google Scholar 

  23. Fridrich J (1998) Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurcation Chaos 8:1259-1284

    Article  MATH  MathSciNet  Google Scholar 

  24. Gao H J, Zhang Y S, Liang S Y (2006) A new chaotic algorithm for image encryption. Chaos, Solitons, Fractals 29:393-399

    Article  MATH  Google Scholar 

  25. Gao Q, Moschytz G S (2004) Fingerprint feature matching using CNNs. Proc 2004 Int Symp Circ Syst 3:73-76

    Google Scholar 

  26. Gao T G, Chen Z Q (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372:394-400

    Article  Google Scholar 

  27. Goedgebuer J P, Levy P, Larger L (2002) Optical communication with synchronized hyperchaos generated electro optically. IEEE J Quantum Electron 38:1178-1183

    Article  Google Scholar 

  28. Guzman J, Astrom K J, Dormido S (2008) Interactive learning modules for PID control. IEEE Contr Syst Mag 28:118-134

    Article  Google Scholar 

  29. He Z, Li K (2000) TDMA secure communication based on synchronization of Chua's circuits. J Circ Syst Comp, 10:147-158

    Google Scholar 

  30. He Z Y, Zhang Y F, Lu H T (1999) The dynamic character of cellular neural network with applications to secure communication. J Chin Inst Commun 20:59-67

    Google Scholar 

  31. Jessl J, Bertram M, Hagen H (2005) Web-based progressive geometry transmission using subdivision-surface wavelets. Proc 10th Int Conf 3D Web Technol, 29-35

    Google Scholar 

  32. Kocarev L (2001) Chaos-based cryptography: A brief overview. IEEE Circ Syst Mag 1:6-21

    Article  Google Scholar 

  33. Kocarev L, Jakimoski G (2001) Logistic map as a block encryption algorithm. Phys Lett A 289:199-206

    Article  MATH  MathSciNet  Google Scholar 

  34. Lai X J, Massey J L (1990) A proposal for a new block encryption standard. Adv in Cryptology-EUROCRYPT'90, Springer-Berlin, LNCS 473:389-404

    MathSciNet  Google Scholar 

  35. Lee J W, Giraud-Carrier C (2007) Transfer Learning in Decision Trees. 2007 Int Joint Conf Neural Networks, 726-731

    Google Scholar 

  36. Li P, Li Z, Halang W A (2007) A stream cipher based on a spatiotemporal chaotic system. Chaos, Solitons, Fractals 32:1867-1876

    Article  MATH  MathSciNet  Google Scholar 

  37. Li S J, Zheng X (2002) Cryptanalysis of a chaotic image encryption method. Proc IEEE Int Symp Circ Syst 2:26-29

    Google Scholar 

  38. Li Z G, Li K, Wen C Y (2003) A new chaotic secure communication system. IEEE Trans Commun 51:1306-1312

    Article  Google Scholar 

  39. Li X B, Knipe J, Cheng H (1997) Image compression and encryption using tree structures. Pattern Recogn Lett 18: 1253-1259

    Article  Google Scholar 

  40. Lian S G, Wang Z Q, Li Z X (2004) Secure multimedia encoding schemes based on quad-tree structure. J Image and Graphics 9:353-359

    Google Scholar 

  41. Maniccam S S, Bourbakis N (2004) Image and video encryption using SCAN patterns. Pattern Recogn 37:725-737

    Article  Google Scholar 

  42. Martin K, Lukac R, Plataniotis K N (2005) Efficient encryption of compressed color images. Proc IEEE Int Symp Ind Electron 3:1245-1250

    Google Scholar 

  43. Mascolo S, Grassi G (1998) Observers for hyperchaos synchronization with application to secure communications. Proc IEEE Int Conf Control App 2:1016-1020

    Google Scholar 

  44. Masuda N, Aihara K (2002) Cryptosystems with discretized chaotic maps. IEEE Trans Circ Syst I 49:28-40

    Article  MathSciNet  Google Scholar 

  45. Matthews R (1989) On the derivation of a chaotic encryption algorithm. Cryptologia XIII:29-42

    Google Scholar 

  46. Mozina M, Zabkar J, Bratko I (2007) Argument based machine learning. Artificial Intelligence 171:922-937

    Article  MathSciNet  Google Scholar 

  47. Parberry I (1997) An efficient algorithm for the Knight's tour problem. Discrete Appl Math 73:251-260

    Article  MATH  MathSciNet  Google Scholar 

  48. Pareek N K, Patidar V, Sud K K (2006) Image encryption using chaotic logistic map. Image Vis Comput 24:926-934

    Article  Google Scholar 

  49. Parker A T, Short K M (2001) Reconstructing the keystream from a chaotic encryption scheme. IEEE Trans Circ Syst I 48:104-12

    Article  MathSciNet  Google Scholar 

  50. Pecora L M, Carroll T L (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821-824

    Article  MathSciNet  Google Scholar 

  51. Pecora L M, Carroll T L (1991) Driving systems with chaotic signals. Phys Rev A 44:2374-2383

    Article  Google Scholar 

  52. Perez G, Cerdeira H A (1995) Extracting messages masked by chaos. Phys Rev Lett 74:1970-1973

    Article  Google Scholar 

  53. Pisarchik A N, Flores-Carmona N J, Carpio-Valadez M (2006) Encryption and decryption of images with chaotic map lattices. Chaos 6:033118.1-033118.6

    Google Scholar 

  54. Qiu S H, Ma Z G (2003) An image cryptosystem based on general cat map. J Commun Chin 24:51-57

    Google Scholar 

  55. Radha H, Vetterli M, Leonardi R (1996) Image compression using binary space partitioning trees. IEEE Trans Image Process 5:1610-1624

    Article  Google Scholar 

  56. Rhouma R, Meherzi S, Belghith S (2008) OCML-based colour image encryption. Chaos, Solitons Fractals doi:10.1016/j.chaos.2007.07.083

    Google Scholar 

  57. Rivest R L, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public key cryptosystems. Commun ACM 21:120-126

    Article  MATH  MathSciNet  Google Scholar 

  58. Scharinger J (1998) Fast encryption of image data using chaotic Kolmogorov flows. J Electron Imaging 7:318-325

    Article  Google Scholar 

  59. Schneier B (1996) Applied Cryptography (2nd edn). John Wiley & Sons Press, New York

    Google Scholar 

  60. Shannon C E (1949) Communication theory of secrecy system. Bell Syst Tech J 28:656-715

    MathSciNet  Google Scholar 

  61. Shiang H P, Tu W, van der Schaar M (2008) Dynamic Resource Allocation of Delay Sensitive Users Using Interactive Learning over Multi-Carrier Networks. 2008 IEEE Int Conf Commun, 2502-2506

    Google Scholar 

  62. Slavova A (1998) Dynamic properties of cellular neural networks with nonlinear output function. IEEE Trans Circ Syst I 45:587-590

    Article  MATH  MathSciNet  Google Scholar 

  63. Su T J, Du Y Y, Cheng Y J et al (2005) A fingerprint recognition system using cellular neural networks. 9th Int Wkshp Cellular Neural Networks App, 170-173

    Google Scholar 

  64. Quattoni A, Collins M, Darrell T (2008) Transfer learning for image classification with sparse prototype representations. 2008 IEEE Conf Comp Vis and Pattern Recogn, 1-8

    Google Scholar 

  65. Vladimir S U, Jean-Pierre G, Laurent L (2001) Communicating with optical hyperchaos: information encryption and decryption in delayed nonlinear feedback systems. Phys Rev Lett 86:1892-1895

    Article  Google Scholar 

  66. Wong K W (2003) A combined chaotic cryptographic and hashing scheme. Phys Lett A 307:292-298

    Article  MATH  MathSciNet  Google Scholar 

  67. Wolf A, Swift J B, Swinney H L (1985) Detecting Lyapunov Exponents from a Time Series. Physica D 16:285-317

    Article  MATH  MathSciNet  Google Scholar 

  68. Yang T, Lin B Y, Chun M Y (1998) Application of neural networks to unmasking chaotic secure communication. Physica D, 124:248-257

    Article  MATH  Google Scholar 

  69. Yang T, Wu C W, Chua L O (1997) Cryptography based on chaotic systems. IEEE Trans Circ Syst I 44:469-472

    Article  MATH  Google Scholar 

  70. Yang Z X, Karahoca A (2006) An anomaly intrusion detection approach using cellular neural networks. Comput Inf Sci - ISCIS'06, Springer-Berlin, LNCS 4263:908-917

    Google Scholar 

  71. Yen J C, Guo J I (2000) A new chaotic key-based design for image encryption and decryption. Proc IEEE Int Conf Circ Syst 4:49-52

    Google Scholar 

  72. Zhang W, Peng J, Yang H Q (2005) A digital image encryption scheme based on the hybrid of cellular neural network and logistic map. Adv Neural Networks, ISNN'05, Springer-Berlin, LNCS 3497:860-867

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Peng, J., Zhang, D. (2009). Image Encryption and Chaotic Cellular Neural Network. In: Machine Learning in Cyber Trust. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88735-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88735-7_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-88734-0

  • Online ISBN: 978-0-387-88735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics