Nothing Special   »   [go: up one dir, main page]

Skip to main content

RPL2: A language and parallel framework for evolutionary computing

  • Software Tools for Evolutionary Computation
  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN III (PPSN 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 866))

Included in the following conference series:

Abstract

The Reproductive Plan Language RPL2 is an extensible, interpreted language for writing and using evolutionary computing programs. It supports arbitrary genetic representations, all structured population models described in the literature together with further hybrids, and runs on parallel or serial hardware while hiding parallelism from the user. This paper surveys structured population models, explains and motivates the benefits of generic systems such as RPL2 and describes the suite of applications that have used RPL2 to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel, 1991. A survey of evolution strategies. In Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Shumeet Baluja, 1993. Structure and performance of fine-grain parallelism in genetic search. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Ian D. Boyd, Patrick D. Surry, and Nicholas J. Radcliffe, 1994. Constrained gas network pipe sizing with genetic algorithms. Technical Report EPCC-TR94-11, Edinburgh Parallel Computing Centre.

    Google Scholar 

  • J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. Richards, 1987. Punctuated equilibria: a parallel genetic algorithm. In Proceedings of the Second International Conference on Genetic Algorithms. Lawrence Erlbaum Associates (Hillsdale, New Jersey).

    Google Scholar 

  • J. P. Cohoon, W. N. Martin, and D. S. Richards, 1990. Genetic algorithms and punctuated equilibria. In H. P. Schwefel and R. Manner, editors, Parallel Problem Solving From Nature, pages 134–144. Springer-Verlag.

    Google Scholar 

  • Yuval Davidor, Takeshi Yamada, and Ryohei Nakano, 1993. The ECOlogical framework II: Improving ga performance at virtually zero cost. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Yuval Davidor, 1991. A naturally occurring niche and species phenomenon: The model and first results. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 257–263. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Lawrence Davis, 1989. Adapting operator probabilities in genetic algorithms. In Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Lawrence Davis, 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold (New York).

    Google Scholar 

  • Nigel Dewdney, 1992. Genetic algorithms for neural network optimisation. Master's thesis, University of Edinburgh.

    Google Scholar 

  • David B. Fogel, 1993. Evolving behaviours in the iterated prisoner's dilemma. Evolutionary Computing, 1(1).

    Google Scholar 

  • Felicity A. W. George, 1994. Using genetic algorithms to optimise the configuration of networks of car dealerships. Technical Report EPCC-TR94-05, Edinburgh Parallel Computing Centre.

    Google Scholar 

  • David E. Goldberg, 1989. Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley (Reading, Mass).

    Google Scholar 

  • David E. Goldberg, 1990. Real-coded genetic algorithms, virtual alphabets, and blocking. Technical Report IlliGAL Report No. 90001, Department of General Engineering, University of Illinois at Urbana-Champaign.

    Google Scholar 

  • V. Scott Gordon and Darrell Whitley, 1993. Serial and parallel genetic algorithms as function optimisers. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Martina Gorges-Schleuter, 1989. ASPARAGOS: an asynchronous parallel genetic optimization strategy. In Proceedings of the Third International Conference on Genetic Algorithms, pages 422–427. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Martina Gorges-Schleuter, 1990. Explicit parallelism of genetic algorithms through population structures. In H. P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature, pages 150–159. Springer Verlag (Berlin).

    Google Scholar 

  • W. Daniel Hillis, 1991. Co-evolving parasites improve simulated evolution as an optimization procedure. In Stephanie Forrest, editor, Emergent Computation. MIT Press (Cambridge, MA).

    Google Scholar 

  • John H. Holland, 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press (Ann Arbor).

    Google Scholar 

  • Philip Husbands and Frank Mill, 1991. Simulated co-evolution as the mechanism for emergent planning and scheduling. In Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Graham P. Jones, 1992. Parallel genetic algorithms for large travelling salesrep problems. Master's thesis, University of Edinburgh.

    Google Scholar 

  • John R. Koza, 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Bradford Books, MIT Press (Cambridge, Mass).

    Google Scholar 

  • B. Manderick and P. Spiessens, 1989. Fine-grained parallel genetic algorithms. In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 428–433, San Mateo. Morgan Kaufmann Publishers.

    Google Scholar 

  • G. Marsaglia, A. Zaman, and W. W. Tsang, 1990. Toward a universal random number generator. Statistics and Probability Letters, 9(1):35–39.

    Article  Google Scholar 

  • Tsutomo Maruyama, Tetsuya Hirose, and Akihiko Konagaya, 1993. A fine-grained parallel genetic algorithm for distributed parallel systems. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Andrew J. Mason, 1993. Crossover non-linearity ratios and the genetic algorithm: Escaping the blinkers of schema processing and intrinsic parallelism. Technical Report Report No. 535b, School of Engineering, University of Auckland.

    Google Scholar 

  • Zbigniew Michalewicz, 1993. Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag (Berlin).

    Google Scholar 

  • Heinz Mühlenbein, M. Schomisch, and J. Born, 1991. The parallel genetic algorithm as function optimiser. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 271–278. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • H. Mühlenbein, 1989. Parallel genetic algorithms, population genetics and combinatorial optimization. In Proceedings of the Third International Conference on Genetic Algorithms, pages 416–421. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Michael Norman, 1988. A genetic approach to topology optimisation for multiprocessor architectures. Technical report, University of Edinburgh.

    Google Scholar 

  • Chrisila C. Petty and Michael R. Leuze, 1989. A theoretical investigation of a parallel genetic algorithm. In Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Nicholas J. Radcliffe and Patrick D. Surry, 1994. Co-operation through hierarchical competition in genetic data mining. Technical Report EPCC-TR94-09, Edinburgh Parallel Computing Centre.

    Google Scholar 

  • Nicholas J. Radcliffe, 1991. Equivalence class analysis of genetic algorithms. Complex Systems, 5(2):183–205.

    Google Scholar 

  • Nicholas J. Radcliffe, 1994. The algebra of genetic algorithms. To appear in Annals of Maths and Artificial Intelligence.

    Google Scholar 

  • Claudio V. Russo, 1991. A general framework for implementing genetic algorithms. Technical Report EPCC-SS91-17, Edinburgh Parallel Computing Centre, University of Edinburgh.

    Google Scholar 

  • Jonathan Shapcott, 1992. Genetic algorithms for investment portfolio selection. Technical Report EPCC-SS92-24, Edinburgh Parallel Computing Centre, University of Edinburgh.

    Google Scholar 

  • Piet Spiessens and Bernard Manderick, 1991. A massively parallel genetic algorithm: Implementation and first analysis. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 279–286. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • T. Starkweather, D. Whitley, and K. Mathias, 1990. Optimization using distributed genetic algorithms. In H. P. Schwefel and R. Manner, editors, Parallel Problem Solving From Nature, pages 176–185. Springer-Verlag.

    Google Scholar 

  • Reiko Tanese, 1989. Distributed genetic algorithms. In Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • M. G. A. Verhoeven, E. H. L. Aarts, E. van de Sluis, and R. J. M. Vaessens, 1992. Parallel local search and the travelling salesman problem. In R. Männer and B. Manderick, editors, Parallel Problem Solving From Nature, 2, pages 543–552. Elsevier Science Publishers/North Holland (Amsterdam).

    Google Scholar 

  • Darrell Whitley, Timothy Starkweather, and Christopher Bogart, 1989. Genetic algorithms and neural networks: Optimizing connections and connectivity. Technical Report CS-89-117, Colorado State University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yuval Davidor Hans-Paul Schwefel Reinhard Männer

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Surry, P.D., Radcliffe, N.J. (1994). RPL2: A language and parallel framework for evolutionary computing. In: Davidor, Y., Schwefel, HP., Männer, R. (eds) Parallel Problem Solving from Nature — PPSN III. PPSN 1994. Lecture Notes in Computer Science, vol 866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58484-6_305

Download citation

  • DOI: https://doi.org/10.1007/3-540-58484-6_305

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58484-1

  • Online ISBN: 978-3-540-49001-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics