Nothing Special   »   [go: up one dir, main page]

Skip to main content

Algorithms Based on Randomization and Linear and Semidefinite Programming

  • Conference paper
  • First Online:
SOFSEM’ 98: Theory and Practice of Informatics (SOFSEM 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1521))

  • 451 Accesses

Abstract

We study three methods based on linear programming and generalizations that are often applied to approximate combinatorial optimization problems. We start by describing an approximate method based on linear programming; as an example we consider scheduling of jobs on unrelated machines with costs. The second method presented is based on semidefinite programming; we show how to obtain a reasonable solution for the maximum cut problem. Finally, we analyze the conditional probabilities method in connection with randomized rounding for routing, packing and covering integer linear programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Alon and J. Spencer, The Probabilistic Method, Wiley Interscience, 1992.

    Google Scholar 

  2. R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows, Prentice Hall, Englewood Cliffs, 1993.

    Google Scholar 

  3. F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM Journal on Optimization (1995), 13–51.

    Google Scholar 

  4. H.L. Bodlaender and K. Jansen, On the complexity of the maximum cut problem, Symposium on Theoretical Aspects of Computer Science STACS 94, LNCS 775, 769–780.

    Google Scholar 

  5. B. Chor and M. Sudan, A geometric approach to betweeness, European Symposium on Algorithms ESA 95, LNCS979, 227–237.

    Google Scholar 

  6. U. Feige and M.X. Goemans, Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT, Israel Symposium on Theory of Computing and Systems ISTCS 95, 182–189.

    Google Scholar 

  7. A. Frieze and M. Jerrum, Improved approximation algorithms for MAX k-CUT and MAX BISECTION, Algorithmica 18 (1997), 67–81.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.X. Goemans and D.P. Williamson, New 3/4-approximation algorithms for the maximum satisfiability problem, SIAM Journal on Discrete Mathematics 4 (1994), 656–666.

    Article  MathSciNet  Google Scholar 

  9. M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM 42 (1995), 1115–1145.

    Article  MATH  MathSciNet  Google Scholar 

  10. M.D. Grigoriadis and L.G. Khachiyan, Coordination complexity of parallel pricedirective decomposition, Mathematics of Operations Research 21 (1996), 321–340.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1988.

    MATH  Google Scholar 

  12. J. Håstad, Some optimal in-approximability results, ACM Symposium on the Theory of Computing STOC 97, 1–10.

    Google Scholar 

  13. D. Hochbaum, Approximation Algorithms for NP-hard Problems, PWS Publishing Company, Boston, 1997.

    Google Scholar 

  14. K. Jansen and L. Porkolab, Linear time approximation schemes for scheduling on unrelated machines, in preparation.

    Google Scholar 

  15. D. Karger, R. Motwani and M. Sudan, Approximate graph coloring by semidefinite programming, IEEE Symposium on Foundations of Computer Science FOCS 94, 2–13.

    Google Scholar 

  16. L.G. Khachian, A polynomial time algorithm in linear programming, Soviet Mathematics Doklady 20 (1979), 191–194.

    Google Scholar 

  17. J.K. Lenstra, D.B. Shmoys and E. Tardos, Approximation algorithms for scheduling unrelated parallel machines, Mathematical Programming 46 (1990), 259–271.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Programming, Society for Industrial and Applied Mathematics, Philadelphia, 1994.

    Google Scholar 

  19. G. Pataki, Cone-LP’s and semidefinite programs: Geometry and a Simplex type method, Integer Programming and Combinatorial Optimization IPCO 96, LNCS 1084, 162–174.

    Google Scholar 

  20. S.A. Plotkin, D. Shmoys and E. Tardos, Fast approximation algorithms for fractional packing and covering problems, Mathematics of Operations Research 20 (1995), 257–301.

    MATH  MathSciNet  Google Scholar 

  21. P. Raghavan, Randomized Rounding and Discrete Ham-Sandwich Theorems: Provably Good Algorithms for Routing and Packing Problems, PhD thesis, University of California at Berkeley, 1986.

    Google Scholar 

  22. P. Raghavan, Probabilistic construction of deterministic algorithms: approximating packing integer programs, Journal of Computer and System Sciences, 37 (1988), 130–143.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Raghavan and C.D. Thompson. Randomized rounding: a technique for provably good algorithms and algorithmic proofs, Combinatorica, 7 (1987), 365–374.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Sahni and T. Gonzales, P-complete approximation problems, Journal of the ACM (1976), 555–565.

    Google Scholar 

  25. D.B. Shmoys and E. Tardos, An approximation algorithm for the generalized assignment problem, Mathematical Programming 62 (1993), 461–474.

    Article  MathSciNet  Google Scholar 

  26. M. Skutella, Semidefinite relaxations for parallel machine scheduling, IEEE Symposium on the Foundations of Computer Science FOCS 98, to appear.

    Google Scholar 

  27. A. Srinivasan. Improved approximations of packing and covering problems. ACM Symposium on Theory of Computing STOC 95, 268–276.

    Google Scholar 

  28. A. Srivastav and K. Wolf, Finding dense subgraphs with semidefinite programming, Workshop on Approximation Algorithms for Combinatorial Optimization APPROX 98, LNCS 1444, 181–191.

    Google Scholar 

  29. A. Srivastav and P. Stangier, Algorithmic chernoff-hoeffding inequalities in integer programming, Random Structures and Algorithms, 8 (1996), 27–58.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Trevisan. Positive linear programming, parallel approximation, and PCP’s, European Symposium on Algorithms ESA 96, LNCS 1136, 62–75.

    Google Scholar 

  31. P.M. Vaidya, A new algorithm for minimizing convex functions over convex sets, IEEE Symposium on the Foundations of Computer Science FOCS 89, 338–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, K., Rolim, J. (1998). Algorithms Based on Randomization and Linear and Semidefinite Programming. In: Rovan, B. (eds) SOFSEM’ 98: Theory and Practice of Informatics. SOFSEM 1998. Lecture Notes in Computer Science, vol 1521. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49477-4_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-49477-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65260-1

  • Online ISBN: 978-3-540-49477-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics