Abstract
We show how to maintain centers and medians for a collection of dynamic trees where edges may be inserted and deleted and node and edge weights may be changed. All updates are supported in O(log n) time, where n is the size of the tree(s) involved in the update.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
A. Kanevsky, R Tamassia, G. Battista, and J. Chen. On-line maintenance of the four-connected components of a graph (extended abstract). In 32nd FOCS, pages 793–801, 1991.
S. Alstrup, J. Holm, K de Lichtenberg, and M. Thorup. Minimizing diameters of dynamic trees. In ICALP’97, pages 270–280, 1997.
V. Auletta, D. Parente, and G. Persiano. Dynamic and static algorithms for optimal placement of resources in a tree. TCS, 165:441–461, 1996.
G. Battista and R. Tamassia. Incremental planarity testing (extended abstract). In 30th FOCS, pages 436–441, 1989.
G. Battista and R. Tamassia. On-line graph algorithms with SPQR-trees. In ICALP’90, pages 598–611, 1990.
S. Cheng and M. Ng. Isomorphism testing and display of symmetries in dynamic trees. In Proc. 7th SODA, 1996.
R. Cohen and R. Tamassia. Dynamic expression trees. Algorithmica, 13(3):245–265, 1995.
R. Cohen and R. Tamassia. Combine and conquer. Algorithmica, 18(3):324–362, 1997.
R. F. Cohen and R. Tamassia. Dynamic expression trees and their applications. In 2nd SODA, pages 52–61, 1991.
G. Frederickson. Data structures for on-line updating of minimum spanning trees, with applications. SICOMP, 14(4):781–798, 1985.
G. Frederickson. Parametric search and locating supply centers in trees. In WADS’91, volume 519 of LNCS, pages 299–319, 1991.
G. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees. SICOMP, 26(2):484–538, 1997. See also FOCS’91.
M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Proc. 21st STOC, pages 345–354, 1989.
Z. Galil and G. Italiano. Maintaining biconnected components of dynamic planar graphs. In ICALP’91, 1991.
B. Gavish and S. Sridhar. Computing the 2-median on tree networks in O(n log n) time. Networks, 26, 1995. See also Networks Vol. 27, 1996.
A. Goldberg, M. Grigoriadis, and R. Tarjan. Use of dynamic trees in a network simplex algorithm for the maximum flow problem. Math. Programming, 50:277–290, 1991.
A. Goldman. Optimal center location in simple networks. Transportation Sci., 5:212–221, 1971.
S. Hakimi and O. Kariv. An algorithmic approach to network location problems, ii: the p-medians. SIAM J. APPL. MATH., 37(3):539–560, 1979.
G. Handler. Minimax location of a facility in an undirected tree network. Transportation. Sci., 7:287–293, 1973.
M. R. Henzinger and V. King. Randomized dynamic graph algorithms with polylogarithmic time per operation. In Proc. 27th Symp. on Theory of Computing, pages 519–527, 1995.
J. A. La Poutré. Dynamic graph algorithms and data structures. PhD thesis, Dep. Comp. Sci., Utrecht Uni., 1991.
S. Peckham. Maintaining tree projections in amortized O(log n) time. Technical Report TR89-1034, Cornell Uni., Comp. Sci. Dep., 1989.
J. A. L. Poutré. Alpha-algorithms for incremental planarity testing. In 26th STOC, pages 706–715, 1994.
J. L. Poutré. Maintenance of triconnected components of graphs. In ICALP’92, volume 623 of LNCS, pages 354–365, 1992.
T. Radzik. Implementations of dynamic trees with in-subtree operations. ACM J. Experimental Algorithmics, 3:Article 9, 1998.
A. Rosenthal and J. Pino. A generalized algorithm for centrality problems on trees. J. ACM, 36:349–361, 1989.
D. Sleator and R. Tarjan. A data structure for dynamic trees. JCSS, 26(3):362–391, 1983. See also STOC’81.
R. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. Journal of computer and system sciences, 18(2):110–127, 1979. See also STOC 1977.
R. Tarjan. Dynamic trees and search trees via euler tours, applied to the network simplex algorithm. Technical Report 503–95, Dep. Comp. Sci., Princeton Uni., September 1995.
J. Westbrook and R. Tarjan. Maintaining bridge-connected and biconnected components on-line. Algorithmica, 7:433–464, 1992.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alstrup, S., Holm, J., Thorup, M. (2000). Maintaining Center and Median in Dynamic Trees. In: Algorithm Theory - SWAT 2000. SWAT 2000. Lecture Notes in Computer Science, vol 1851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44985-X_6
Download citation
DOI: https://doi.org/10.1007/3-540-44985-X_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67690-4
Online ISBN: 978-3-540-44985-0
eBook Packages: Springer Book Archive