Abstract
In this paper we define the notion of gap in an arbitrary digital picture S in a digital space of arbitrary dimension. As a main result, we obtain an explicit formula for the number of gaps in S of maximal dimension. We also derive a combinatorial relation for a digital curve.
Chapter PDF
Similar content being viewed by others
References
Cohen-Or, D., Kaufman, A.: 3D Line Voxelization and Connectivity Control. IEEE Computer Graphics and Applications 17(6), 80–87 (1997)
Kaufman, A., Cohen, D., Yagel, R.: Volume Graphics. IEEE Computer 26(7), 51–64 (1993)
Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-Composed Sets. Computer Vision and Vision Understanding 61, 70–83 (1995)
Klette, R., Rosenfeld, A.: Digital Geometry – Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital Planarity – a Review. CITR-TR 142, Auckland (2004)
Andres, E., Nehlig, P., Françon, J.: Tunnel-Free Supercover 3D Polygons and Polyhedra. In: Fellner, D., Szirmay-Kalos, L. (eds.) EUROGRAPHICS 1997, pp. C3–C13 (1997)
Brimkov, V.E., Andres, E., Barneva, R.P.: Object Discretizations in Higher Dimensions. Pattern Recognition Letters 23, 623–636 (2002)
Andres, E., Acharya, R., Sibata, C.: Discrete Analytical Hyperplanes. Graphical Models and Image Processing 59, 302–309 (1997)
Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R.: The Number of Gaps in Binary Pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 35–42. Springer, Heidelberg (2005)
Brimkov, V.E., Maimone, A., Nordo, G.: Counting Gaps in Binary Pictures. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006)
Kong, T.Y.: Digital Topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston Massachusetts (2001)
Kovalevsky, V.A.: Finite Topology as Applied to Image analysis. Computer Vision, Graphics and Image Processing 46(2), 141–161 (1989)
Brimkov, V.E., Klette, R.: Curves, Hypersurfaces, and Good Pairs of Adjacency Relations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 276–290. Springer, Heidelberg (2004)
Mylopoulos, J.P., Pavlidis, T.: On the Topological Properties of Quantized Spaces. I. The Notion of Dimension. J. ACM 18, 239–246 (1971)
Dielissen, V.J., Kaldewaij, A.: Rectangular Partition is Polynomial in Two Dimensions but NP-complete in Three. Information Processing Letters 38, 1–6 (1991)
Hershberger, J.E., Snoeyink, J.S.: Erased Arrangements of Lines and Convex Decompositions of Polyhedra. Computational Geometry: Theory and Applications 9, 129–143 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brimkov, V.E., Moroni, D., Barneva, R. (2006). Combinatorial Relations for Digital Pictures. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds) Discrete Geometry for Computer Imagery. DGCI 2006. Lecture Notes in Computer Science, vol 4245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11907350_16
Download citation
DOI: https://doi.org/10.1007/11907350_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47651-1
Online ISBN: 978-3-540-47652-8
eBook Packages: Computer ScienceComputer Science (R0)