Nothing Special   »   [go: up one dir, main page]

Skip to main content

Speckle Reduction of Polarimetric SAR Images Based on Neural ICA

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

  • 1370 Accesses

Abstract

The polarimetric synthetic aperture radar (PSAR) images are modeled by a mixture model that results from the product of two independent models, one characterizes the target response and the other characterizes the speckle phenomenon. For the scene interpretation, it is desirable to separate between the target response and the speckle. For this purpose, we proposed a new speckle reduction approach using independent component analysis (ICA) based on statistical formulation of PSAR image. In addition, we apply four ICA algorithms on real PSAR images and compare their performances. The comparison reveals characteristic differences between the studied neural ICA algorithms, complementing the results obtained earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oliver, C., Quegan, S.: Understanding Synthetic Aperture Radar Images. Artech-House, London (1998)

    Google Scholar 

  2. Chitroub, S., Houacine, A., Sansal, B.: Statistical characterisation and modelling of SAR images. Signal Processing 82(1), 69–92 (2002)

    Article  MATH  Google Scholar 

  3. Pi, Y., et al.: Polarimetric speckle reduction using multi-texture maximum likelihood method. IEE Electronic Letter 39(18), 1348–1349 (2003)

    Article  Google Scholar 

  4. Common, P.: Independent component analysis, a new concept? Signal processing 36, 287–314 (1994)

    Article  Google Scholar 

  5. Cichocki, A., Unbehauen, R.: Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Trans. on Circuits and Systems 43(11), 894–906 (1996)

    Article  Google Scholar 

  6. Yang, H., Amari, S.: Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information. Neural Computation 9(7), 1457–1482 (1997)

    Article  Google Scholar 

  7. Cruces, S., Castedo, L., Cichocki, A.: Robust blind source separation algorithms using cumulants. Neurocomputing 49, 87–118 (2002)

    Article  MATH  Google Scholar 

  8. Lee, T.-W., Girolami, M., Sejnowski, T.J.: Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources [J]. Neural Computation 11(2), 417–441 (1999)

    Article  Google Scholar 

  9. Hyvärinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  10. Fiori, S.: Overview of independent component analysis technique with an application to Synthetic Aperture Radar (SAR) imagery processing. Neural Networks 16(special issue), 453–467 (2003)

    Article  Google Scholar 

  11. Giannakopoulos, X., Karhunen, J., Oja, E.: An experimental comparison of neural ICA algorithms. In: Proc. Int. Conf. on Artificial Neural Networks, Girolami, M., Fyfe, C., Generalised independent, Skovde, Sweden (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ji, J., Tian, Z. (2006). Speckle Reduction of Polarimetric SAR Images Based on Neural ICA. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_43

Download citation

  • DOI: https://doi.org/10.1007/11893257_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics