Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4065))

Included in the following conference series:

  • 1906 Accesses

  • 13 Citations

Abstract

Classification methods commonly assume unordered class values. In many practical applications – for example grading – there is a natural ordering between class values. Furthermore, some attribute values of classified objects can be ordered, too. The standard approach in this case is to convert the ordered values into a numeric quantity and apply a regression learner to the transformed data. This approach can be used just in case of linear ordering. The proposed method for such a classification lies on the boundary between ordinal classification trees, classification trees with monotonicity constraints and multi-relational classification trees. The advantage of the proposed method is that it is able to handle non-linear ordering on the class and attribute values. For the better understanding, we use a toy example from the semantic web environment – prediction of rules for the user’s evaluation of hotels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Džeroski, S., Lavrač, N.: An introduction to inductive logic programming. In: Džeroski, S., Lavrač, N. (eds.) Relational data mining, pp. 48–73. Springer, Heidelberg (2001)

    Google Scholar 

  2. Frank, E., Hall, M.: A simple approach to ordinal classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS, vol. 2167, pp. 145–156. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Horváth, T., Vojtáš, P.: Fuzzy induction via generalized annotated programs. In: 8th International Conference on Computational Intelligence (Fuzzy Days, Dortmund 2004), Dortmund, Germany, pp. 419–433. Springer, Heidelberg (2005)

    Google Scholar 

  4. Horváth, T., Sudzina, F., Vojtáš, P.: Mining rules from monotone classification measuring impact of information systems on business competitiveness. In: 6th International Conference on Information Technology for Balanced Automation Systems (BASYS 2004), Wien, Austria, pp. 451–458. Springer, Heidelberg (2004)

    Google Scholar 

  5. Horváth, T., Krajči, S., Lencses, R., Vojtáš, P.: An ILP model for a graded classification problem. J. Kybernetika 40(3), 317–332 (2004)

    Google Scholar 

  6. Leiva, H.A.: MRDTL: A multi-relational decision tree learning algorithm. M.Sc Thesis, Iowa State Univerity, Ames, Iowa (2002)

    Google Scholar 

  7. Potharst, R., Feelders, A.J.: Classification Trees for Problems with Monotonicity Constraints. SIGKDD Explorations 4(1), 1–10 (2002)

    Article  Google Scholar 

  8. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horváth, T., Vojtáš, P. (2006). Ordinal Classification with Monotonicity Constraints. In: Perner, P. (eds) Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining. ICDM 2006. Lecture Notes in Computer Science(), vol 4065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790853_17

Download citation

  • DOI: https://doi.org/10.1007/11790853_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36036-0

  • Online ISBN: 978-3-540-36037-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics