Abstract
Classification methods commonly assume unordered class values. In many practical applications – for example grading – there is a natural ordering between class values. Furthermore, some attribute values of classified objects can be ordered, too. The standard approach in this case is to convert the ordered values into a numeric quantity and apply a regression learner to the transformed data. This approach can be used just in case of linear ordering. The proposed method for such a classification lies on the boundary between ordinal classification trees, classification trees with monotonicity constraints and multi-relational classification trees. The advantage of the proposed method is that it is able to handle non-linear ordering on the class and attribute values. For the better understanding, we use a toy example from the semantic web environment – prediction of rules for the user’s evaluation of hotels.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Džeroski, S., Lavrač, N.: An introduction to inductive logic programming. In: Džeroski, S., Lavrač, N. (eds.) Relational data mining, pp. 48–73. Springer, Heidelberg (2001)
Frank, E., Hall, M.: A simple approach to ordinal classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS, vol. 2167, pp. 145–156. Springer, Heidelberg (2001)
Horváth, T., Vojtáš, P.: Fuzzy induction via generalized annotated programs. In: 8th International Conference on Computational Intelligence (Fuzzy Days, Dortmund 2004), Dortmund, Germany, pp. 419–433. Springer, Heidelberg (2005)
Horváth, T., Sudzina, F., Vojtáš, P.: Mining rules from monotone classification measuring impact of information systems on business competitiveness. In: 6th International Conference on Information Technology for Balanced Automation Systems (BASYS 2004), Wien, Austria, pp. 451–458. Springer, Heidelberg (2004)
Horváth, T., Krajči, S., Lencses, R., Vojtáš, P.: An ILP model for a graded classification problem. J. Kybernetika 40(3), 317–332 (2004)
Leiva, H.A.: MRDTL: A multi-relational decision tree learning algorithm. M.Sc Thesis, Iowa State Univerity, Ames, Iowa (2002)
Potharst, R., Feelders, A.J.: Classification Trees for Problems with Monotonicity Constraints. SIGKDD Explorations 4(1), 1–10 (2002)
Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Horváth, T., Vojtáš, P. (2006). Ordinal Classification with Monotonicity Constraints. In: Perner, P. (eds) Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining. ICDM 2006. Lecture Notes in Computer Science(), vol 4065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790853_17
Download citation
DOI: https://doi.org/10.1007/11790853_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36036-0
Online ISBN: 978-3-540-36037-7
eBook Packages: Computer ScienceComputer Science (R0)