Nothing Special   »   [go: up one dir, main page]

Skip to main content

Support Vector Machine to Synthesise Kernels

  • Conference paper
Deterministic and Statistical Methods in Machine Learning (DSMML 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3635))

Abstract

In this paper, we introduce a new method (SVM_2K) which amalgamates the capabilities of the Support Vector Machine (SVM) and Kernel Canonical Correlation Analysis (KCCA) to give a more sophisticated combination rule that the boosting framework allows. We show how this combination can be achieved within a unified optimisation model to create a consistent learning rule which combines the classification abilities of the individual SVMs with the synthesis abilities of KCCA. To solve the unified problem, we present an algorithm based on the Augmented Lagrangian Method. Experiments show that SVM_2K performs well on generic object recognition problems in computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines (and other kernel-based learning methods). Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Kolenda, T., Hansen, L.K., Larsen, J., Winther, O.: Independent component analysis for understanding multimedia content. In: Bourlard, H., Adali, T., Bengio, S., Larsen, J., Douglas, S. (eds.) Proceedings of IEEE Workshop on Neural Networks for Signal Processing XII, pp. 757–766. IEEE Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  3. Hardoon, D.R., Shawe-Taylor, J.: KCCA for different level precision in content-based image retrieval. In: Proceedings of Third International Workshop on Content-Based Multimedia Indexing, IRISA, Rennes, France (2003)

    Google Scholar 

  4. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  5. Vinokourov, A., Shawe-Taylor, J., Cristianini, N.: Inferring a semantic representation of text via cross-language correlation analysis. In: Advances of Neural Information Processing Systems, vol. 15 (2002)

    Google Scholar 

  6. Vinokourov, A., Hardoon, D.R., Shawe-Taylor, J.: Learning the semantics of multimedia content with application to web image retrieval and classification. In: Proceedings of Fourth International Symposium on Independent Component Analysis and Blind Source Separation, Nara, Japan (2003)

    Google Scholar 

  7. Meng, H., Hardoon, D.R., Shawe-Taylor, J., Szedmak, S.: Generic object recognition by distinct features combination in machine learning. In: Proceedings of SPIE, vol. 5673 (January 2005)

    Google Scholar 

  8. Lanckriet, G.R., Cristianini, N., Ghaoui, P.B.L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. Journal of machine learning research, 27–72 (2004)

    Google Scholar 

  9. Dasgupta, S., Littman, M.L., McAllester, D.: PAC generalization bounds for co-training. Advances in Neural Information Processing Systems, NIPS (2001)

    Google Scholar 

  10. Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., Noble, W.: Kernel-based data fusion and its application to protein function prediction in yeast. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 300–311 (2004)

    Google Scholar 

  11. Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and the smo algorithm. In: Proceedings of the 21st International Conference on Machine Learning, Canada (2004)

    Google Scholar 

  12. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: 15th Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  13. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)

    Google Scholar 

  14. Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: Proceedings of the 2004 European Conference on Computer vision. Prague Czech Republic, pp. 71–84 (2004)

    Google Scholar 

  15. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  16. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Proceedings of the 2002 European Conference on Computer vision. Copenhagen Denmark, pp. 128–142 (2002)

    Google Scholar 

  17. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer vision. Kerkyra Greece, pp. 1150–1157 (1999)

    Google Scholar 

  18. Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Co-Training. In: Proceedings of the 11th Annual Conference on Computational Learning Theory, pp. 92–100 (1998)

    Google Scholar 

  19. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. Journal of Machine Learning Research 6, 615–637 (2005)

    MathSciNet  Google Scholar 

  20. Muslea, I., Minton, S., Knoblock, C.A.: Active + semi-supervised learning = robust multi-view learning. In: Proceedings of the 19th International Conference on Machine Learning (ICML 2002), Sydney, Australia, pp. 435–442 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, H., Shawe-Taylor, J., Szedmak, S., Farquhar, J.D.R. (2005). Support Vector Machine to Synthesise Kernels. In: Winkler, J., Niranjan, M., Lawrence, N. (eds) Deterministic and Statistical Methods in Machine Learning. DSMML 2004. Lecture Notes in Computer Science(), vol 3635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559887_15

Download citation

  • DOI: https://doi.org/10.1007/11559887_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29073-5

  • Online ISBN: 978-3-540-31728-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics