Abstract
In this paper, we introduce a new method (SVM_2K) which amalgamates the capabilities of the Support Vector Machine (SVM) and Kernel Canonical Correlation Analysis (KCCA) to give a more sophisticated combination rule that the boosting framework allows. We show how this combination can be achieved within a unified optimisation model to create a consistent learning rule which combines the classification abilities of the individual SVMs with the synthesis abilities of KCCA. To solve the unified problem, we present an algorithm based on the Augmented Lagrangian Method. Experiments show that SVM_2K performs well on generic object recognition problems in computer vision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines (and other kernel-based learning methods). Cambridge University Press, Cambridge (2000)
Kolenda, T., Hansen, L.K., Larsen, J., Winther, O.: Independent component analysis for understanding multimedia content. In: Bourlard, H., Adali, T., Bengio, S., Larsen, J., Douglas, S. (eds.) Proceedings of IEEE Workshop on Neural Networks for Signal Processing XII, pp. 757–766. IEEE Press, Los Alamitos (2002)
Hardoon, D.R., Shawe-Taylor, J.: KCCA for different level precision in content-based image retrieval. In: Proceedings of Third International Workshop on Content-Based Multimedia Indexing, IRISA, Rennes, France (2003)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Vinokourov, A., Shawe-Taylor, J., Cristianini, N.: Inferring a semantic representation of text via cross-language correlation analysis. In: Advances of Neural Information Processing Systems, vol. 15 (2002)
Vinokourov, A., Hardoon, D.R., Shawe-Taylor, J.: Learning the semantics of multimedia content with application to web image retrieval and classification. In: Proceedings of Fourth International Symposium on Independent Component Analysis and Blind Source Separation, Nara, Japan (2003)
Meng, H., Hardoon, D.R., Shawe-Taylor, J., Szedmak, S.: Generic object recognition by distinct features combination in machine learning. In: Proceedings of SPIE, vol. 5673 (January 2005)
Lanckriet, G.R., Cristianini, N., Ghaoui, P.B.L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. Journal of machine learning research, 27–72 (2004)
Dasgupta, S., Littman, M.L., McAllester, D.: PAC generalization bounds for co-training. Advances in Neural Information Processing Systems, NIPS (2001)
Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., Noble, W.: Kernel-based data fusion and its application to protein function prediction in yeast. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 300–311 (2004)
Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and the smo algorithm. In: Proceedings of the 21st International Conference on Machine Learning, Canada (2004)
Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: 15th Advances in Neural Information Processing Systems (2002)
Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)
Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: Proceedings of the 2004 European Conference on Computer vision. Prague Czech Republic, pp. 71–84 (2004)
Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Proceedings of the 2002 European Conference on Computer vision. Copenhagen Denmark, pp. 128–142 (2002)
Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer vision. Kerkyra Greece, pp. 1150–1157 (1999)
Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Co-Training. In: Proceedings of the 11th Annual Conference on Computational Learning Theory, pp. 92–100 (1998)
Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. Journal of Machine Learning Research 6, 615–637 (2005)
Muslea, I., Minton, S., Knoblock, C.A.: Active + semi-supervised learning = robust multi-view learning. In: Proceedings of the 19th International Conference on Machine Learning (ICML 2002), Sydney, Australia, pp. 435–442 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meng, H., Shawe-Taylor, J., Szedmak, S., Farquhar, J.D.R. (2005). Support Vector Machine to Synthesise Kernels. In: Winkler, J., Niranjan, M., Lawrence, N. (eds) Deterministic and Statistical Methods in Machine Learning. DSMML 2004. Lecture Notes in Computer Science(), vol 3635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559887_15
Download citation
DOI: https://doi.org/10.1007/11559887_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29073-5
Online ISBN: 978-3-540-31728-9
eBook Packages: Computer ScienceComputer Science (R0)