Abstract
Within this paper a new data clustering algorithm is proposed based on classical clustering algorithms. Here k-means neurons are used as substitute for the original data points. These neurons are online adaptable extending the standard k-means clustering algorithm. They are equipped with perceptive fields to identify if a presented data pattern fits within its area it is responsible for.
In order to find clusters within the input data an extension of the ε-nearest neighbouring algorithm is used to find connected groups within the set of k-means neurons.
Most of the information the clustering algorithm needs are taken directly from the input data. Thus only a small number of parameters have to be adjusted.
The clustering abilities of the presented algorithm are shown using data sets from two different kind of applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kohonen, T.: Self-Oranizing Maps. Springer Series in Information Sciences (1995)
Schatten, R.: Entwicklung einer aufwachsenden Struktur zum Erlernen einer einfachen Sprache mit Hilfe neuronaler Netze. Master’s thesis, Universität Bonn, Institut für Informatik VI, Neuroinformatik (2002)
Schatten, R.: Systemic architecture for audio signal processing. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 491–498. Springer, Heidelberg (2003)
Berkhin, P.: Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA (2002)
Frigo, M., Johnson, S.G.: Fastest Fourier Transform in the West (1999), http://www.fftw.org/
Sterian, A.: FFTW for Win32 (1999), http://claymore.engineer.gvsu.edu/~steriana/software.html
Zwicker, E.: Subdivision of the Audible Frequency Range into Critical Bands (Frequenzgruppen). JASA 33(2), 248 (1961)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schatten, R., Goerke, N., Eckmiller, R. (2005). Regional and Online Learnable Fields. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_9
Download citation
DOI: https://doi.org/10.1007/11552499_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28833-6
Online ISBN: 978-3-540-31999-3
eBook Packages: Computer ScienceComputer Science (R0)