Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Wintner’s Conjecture About Central Configurations

  • Conference paper
Computer Algebra and Geometric Algebra with Applications (IWMM 2004, GIAE 2004)

Abstract

According to Wintner, the study of central configurations in celestial mechanics may be reduced to an extremality problem. Wintner’s Conjecture amounts to saying that the corresponding extremal zeroes for each fixed number n of different masses is finite. By the author’s Finite Kernel Theorem it follows that the corresponding number of extremal values is finite for each fixed n. Thus, Wintner’s Conjecture will be true or false according to whether there will be only a finite number of extremal zeroes or not. This gives thus a new way of attacking Wintner’s Conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moulton, F.R.: The Straight Line Solutions for the Problem of n-Bodies. Annals of Math. 12, 1–17 (1910)

    Article  MathSciNet  Google Scholar 

  2. Palmore, J.I.: Measure of Degenerate Relative Equilibria, I. Annals of Math. 104, 421–429 (1976)

    Article  MathSciNet  Google Scholar 

  3. Shi, H., Zou, F.: The Flat Central Configurations of Four Planet Motions. MM Research Preprints 15, 113–121 (1997)

    Google Scholar 

  4. Shi, H., Zou, F.: Square and Rhombus Central Configurations. System Science and Mathematical Sciences 13(1), 74–84 (2000)

    MathSciNet  Google Scholar 

  5. Smale, S.: Topology and Mechanics, I,II. Invent. Math. 10, 305–331 (1970); 11, 45–64 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  6. Smale, S.: Problems on the Nature of Relative Equilibria in Celestial Mechanics. In: Manifolds-Amsterdam, pp. 194–198 (1970)

    Google Scholar 

  7. Waldvogel, J.: Note Concerning a Conjecture by A. Wintner Celestial Mechanics 5, 37–40 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wintner, A.: Analytic Foundations of Celestial Mechanics (1941)

    Google Scholar 

  9. Wu, W.-t.: Central Configurations in Planet Motions and Vortex Motions. MM Research Preprints 13, 1–14 (1995)

    Google Scholar 

  10. Wu, W.-t.: Mathematics Mechanization: Mechanical Geometry Theorem-Proving. In: Mechanical Geometry Problem-Solving and Polynomial Equations-Solving. Science Press/Kluwer Academic Publishers (2000)

    Google Scholar 

  11. Wu, Y., Shi, H.: A Special Central Configuration. MM Research Preprints 20, 221–228 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Wt. (2005). On Wintner’s Conjecture About Central Configurations. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_1

Download citation

  • DOI: https://doi.org/10.1007/11499251_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26296-1

  • Online ISBN: 978-3-540-32119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics