Nothing Special   »   [go: up one dir, main page]

Skip to main content

Statistical and Adaptive Approaches for Optimal Segmentation in Medical Images

  • Chapter
Handbook of Biomedical Image Analysis
  • 2000 Accesses

Abstract

Image analysis techniques have been broadly used in computer-aided medical analysis and diagnosis in recent years. Computer-aided image analysis is an increasingly popular tool in medical research and practice, especially with the increase of medical images in modality, amount, size, and dimension. Image segmentation, a process that aims at identifying and separating regions of interests from an image, is crucial in many medical applications such as localizing pathological regions, providing objective quantative assessment and monitoring of the onset and progression of the diseases,as well as analysis of anatomical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. Pham, D. L., Xu, C. J., and Prince, L., A survey of current methods in medical image segmentation, Ann. Rev. Biomed. Eng., Jan 1998.

    Google Scholar 

  2. Haralick, R. M. and Shapiro, L. G., Image segmentation techniques, Comput. Vision, Graphics Image Process., Vol. 29, No. 1, pp. 100–132, 1985.

    Article  Google Scholar 

  3. Fu, K. S. and Mui, J. K. A survey on image segmentation, Patt. Recogn., Vol. 13, pp. 3–16, 1981.

    Article  MathSciNet  Google Scholar 

  4. Pal, N. R. and Pal, S. K., A review on image segmentation techniques, Patt. Recogn., Vol. 26, No. 9, pp. 1277–1294, 1993.

    Article  MathSciNet  Google Scholar 

  5. Suri, J. S., Setarehdan, S. K., and Singh, S., eds., Advanced Algorithmic Approaches to Medical Image Segmentation, Springer-Verlag, London, 2002.

    Google Scholar 

  6. Skarbek, W. and Koschan, A., Colour image segmentation: A survey, Technical Report 94-32, Technical University, Berlin, 1994.

    Google Scholar 

  7. Lucchese, L. and Mitra, S. K., Color image segmentation: A state-of-the-art survey, Proc. Indian Nat. Sci. Acad. (INSA-A), Vol. 67, No. 2, pp. 207–221, 2001.

    Google Scholar 

  8. Bezdek, J. C., Hall, L. O., and Clarke, L. P., Review of MR image segmentation techniques using pattern recognition, Med. Phys., Vol. 20, pp. 1033–1048, 1993.

    Article  Google Scholar 

  9. Clarke, L.P., Camacho, R.P., Velthuizen, M. A., Heine, J. J., Vaidyanathan, M., Hall, L. O., Thatcher, R. W., and Silbiger, M. L., Review of MRI segmentation: Methods and applications, Magn. Reso. Imaging, Vol. 13, No. 3, pp. 343–368, 1995.

    Article  Google Scholar 

  10. Zadeh, L. A., Fuzzy sets, Inf. Control Theory, Vol. 8, pp. 338–353, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  11. Zadeh, L. A., Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst., Man, Cybern., Vol. SMC-3, pp. 28–44, 1973.

    MathSciNet  Google Scholar 

  12. Jain, A. K., Murty, M. N., and Flynn, P. J. Data clustering: A review, ACM Comput Surveys, Vol. 31, No. 3, pp. 264–323, 1999.

    Article  Google Scholar 

  13. Rose, K. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems, Proc. IEEE, Vol. 86, No. 11, 1998.

    Google Scholar 

  14. Newton, S. C., Pemmaraju, S., and Mitra, S., Adaptive fuzzy leader clustering of complex data sets in pattern recognition, IEEE Trans. Neural Networks, Vol. 3, pp. 794–800, 1992.

    Article  Google Scholar 

  15. MacQueen, J., Some methods of classification and analysis of multivariate observations, In: Proceedings of 5th Berkeley Symposium on Math., Stat., and Prob., LeCam, L. M. and Neyman, J., eds., University of California Press, Berkeley, CA, pp. 281, 1967.

    Google Scholar 

  16. Bezdek, J., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.

    MATH  Google Scholar 

  17. Gonzalez, R. C. and Woods, R. E., Digital Image Processing, Addison Wesley, Reading, MA, 1992.

    Google Scholar 

  18. Marroquin, J. L. and Girosi, F., Some extensions of the k-means algorithm for image segmentation and pattern recognition, Technical Report, MIT AI Lab., AI Memo 1390, Jan 1993.

    Google Scholar 

  19. Fraley, C. and Raftery, A. E., How many clusters? Which clustering method? Answers via model-based cluster analysis, Technical Report No. 329, University of Washington, 1998.

    Google Scholar 

  20. Ray, S., Turi, R. H., and Tischer, P. E., Clustering-based color image segmentation: An evaluation study, In: Proceedings of Digital Image Computing: Techniques and Applications, Brishbane, Qld., Austrlia, 6–8 Dec. 1995, pp. 86–92.

    Google Scholar 

  21. Park, S. H., Yun, I. D., and Lee, S. U., Color image segmentation based on 3-D clustering: Morphological approach, Patt. Recogn., Vol. 31, No. 8, pp. 1061–1076, 1998.

    Article  Google Scholar 

  22. Weeks, A. R., and Hague, G. E., Color segmentation in the HIS color space using the k-means algorithm, In: Proceedings of the SPIE—Nonlinear Image Processing VIII, San Jose, CA, Feb, 10–11, 1997, pp. 143–154.

    Google Scholar 

  23. Wu, J., Yan, H., and Chalmers, A. N., Color image segmentation using fuzzy clustering and supervised learning, J. Electron. Imaging, pp. 397–403, 1994.

    Google Scholar 

  24. Pappas, T. N., An adaptive clustering algorithm for image segmentation, IEEE Trans. Signal Process., Vol. SP-40, pp. 901–914, 1992.

    Article  Google Scholar 

  25. Schmid, P., Segmentation of digitized dermatoscopic images by two-dimensional color clustering, IEEE Trans. Med. Imaging, Vol. MI-18, No. 2, pp. 164–171, 1999.

    Article  Google Scholar 

  26. Carpenter, G. A. and Grossberg, S., A massively parallel architecture for a self-organizing neural pattern recognition machine, Comput Vision, Graphics Image Process., Vol. 37, pp. 54–115, 1987.

    Article  Google Scholar 

  27. Carpenter, G. and Grossberg, S. Art-2: Self organization of stable category recognition codes for analog input patterns, Appl. Opt., Vol. 26, pp. 4919–4930, 1987.

    Google Scholar 

  28. Carpenter, G. and S. Grossberg, Art-3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures, Neural Networks, Vol. 3, pp. 129–152, 1990.

    Article  Google Scholar 

  29. Grossberg, S., Embedding fields: A theory of learning with physiological implications, J. Math. Psychol., Vol. 6, pp. 209–239, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  30. Rumelhart D. E. and Hipser, D., Feature discovery by competitive learning, In: Parallel Distributed Processing, MIT Press, Cambridge, MA, pp. 151–193, 1986.

    Google Scholar 

  31. Mitra, S. and Yang, S. Y., High fidelity adaptive vector quantization at very low bit rates for progressive transmission of radiographic images, J. Electron Imaging, Vol. 11, No. 4(Suppl. 2), pp. 24–30, 1998.

    Google Scholar 

  32. Mitra, S., Castellanos, R., Yang, S. Y., and Pemmaraju, S., Adaptive clustering for image segmentation and vector quantization, In: Soft-Computing for Image Processing, Editors: Pal, S. K., Ghosh, A., and Kundu, M. K., eds., Springer-Verlag, New York, 1999.

    Google Scholar 

  33. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., Optimization by simulated annealing, Science, Vol. 220, pp. 671–680, 1983.

    Article  MathSciNet  Google Scholar 

  34. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., Equations of state calculations by fast computing machines, J. Chem. Phys., Vol. 21, No. 6, pp. 1087–1091, 1953.

    Article  Google Scholar 

  35. Johnston, B., Atkins, M. S., Mackiewich, B., and Anderson, M., Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI, IEEE Trans. Med. Imaging, Vol. 15, pp. 154–169, 1996.

    Article  Google Scholar 

  36. Zijdenbos, A. P., Dawant, B. M., Margolin, R. A., and Palmer, A. C., Morphometric analysis of white matter lesions in MR images: Method and validation, IEEE Trans. Med. Imaging, Vol. 13, No. 4, pp. 716–724, 1994.

    Article  Google Scholar 

  37. Hall, L. O., Bensaid, A. M., Clarke, L. P., Velthuizen, R. P., Silbiger, M. S., and Bezdek, J. C., A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain, IEEE Trans. Neural Networks, Vol. 35, pp. 672–682, 1992.

    Article  Google Scholar 

  38. Clark, M. C., Hall, L. O., Goldgof, D. B., et al., MRI segmentation using fuzzy clustering-techniques, IEEE Eng. Med. Biol., Vol. 13, No. 5, pp. 730–742, 1994.

    Article  Google Scholar 

  39. Kamber, M., Collins, D. L., Shinghal, R., Francis, G. S., and Evans, A. C., Model-based 3-D segmentation of multiple sclerosis lesions in dual-echo MRI data, Proc. SPIE Visual. Biomed. Comput., Vol. 1808, pp. 590–600, 1992.

    Google Scholar 

  40. Jackson, E. F., Narayana, P. A., Wolinsky, J. S., and Doyle, T. J., Accuracy and reproducibility in volumetric analysis of multiple sclerosis lesions, J. Comut. Assisted Tomog., Vol. 17, No. 2, pp. 200–205, 1993.

    Article  Google Scholar 

  41. Kapouleas, I., Automatic detection of white matter lesions in magnetic resonance brain images, Comput. Methods Programs Biomed., Vol. 32, pp. 17–35, 1990.

    Article  Google Scholar 

  42. Mitchell, J. R., Karlik, S. J., Lee, D. H., and Fenster, A., Automated detection and quantification of multiple sclerosis lesions in MR volumes of the brain, Proc. SPIE Med. Imag. VI: Image Process., Vol. 1652, pp. 99–106, 1992.

    Google Scholar 

  43. Johnston, B. G., Atkins, M. S., and Booth, K. S., Partial volume segmentation in 3-D of lesions and tissues in magnetic resonance images, Proc. SPIE Med. Imaging, Vol. 2167, pp. 28–39, 1994.

    Google Scholar 

  44. Gerig, G., Kübler, O., Kikinis, R., and Jolesz, F. A., Nonlinear anisotropic filtering of MRI data, IEEE Trans. Med. Imaging, Vol. 11, pp. 221–232, 1992.

    Article  Google Scholar 

  45. Leemput, K. V., Maes, F., Vandermeulen, D., Colchester, A., and Suetens, P., Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Trans. Med. Imaging, Vol. 20, No. 8, pp. 677–688, 2001.

    Article  Google Scholar 

  46. Kwan, R. K.-S., Evans, A. C., and Pike, G. B., MRI simulation-based evaluation of image-processing and classification methods, IEEE Trans. Med. Imaging. Vol. 18, No. 11, pp. 1085–97, 1999.

    Article  Google Scholar 

  47. Cocosco, C. A., Kollokian, V., Kwan, R. K.-S., and Evans, A. C., Brain Web: Online Interface to a 3D MRI Simulated Brain Database, available at: http://www.bic.mni.mcgill.ca/brainweb/.

    Google Scholar 

  48. Corona, E., Mitra, S., Wilson, M., and Soliz, P., Digital stereo optic disc image analyzer for monitoring progression of glaucoma, Proc. SPIE, Vol. 4684, pp. 82–93, 2002.

    Article  Google Scholar 

  49. Corona, E., Mitra, S., Wilson, M., Krile, T., Kwon, Y. H., and Soliz, P., Digital stereo image analyzer for generating automated 3-D measures of optic disc deformation in glaucoma, IEEE Trans. Med. Imaging, Vol. 2, No. 10, pp. 1244–1253, 2002.

    Article  Google Scholar 

  50. Yang, S., King, P., Corona, E., Wilson, M., Aydin, K., Mitra, S., Soliz, P., Nutter, B., and Kwon, Y. H., Feature extraction and segmentation in medical images by statistical optimization and point operation approaches, Proc. SPIE, Vol. 5032, pp. 1676–1684, 2003.

    Article  Google Scholar 

  51. Mitra, S., Nutter, B. S., and Krile, T. F., Automated method for fundus image registration and analysis, Appl. Optics, Vol. 27, pp. 1107–1112, 1988.

    Google Scholar 

  52. Lee, D. J., Krile, T. F., and Mitra, S., Power cepstrum and spectrum techniques applied to image registration, Appl. Optics, Vol. 27, pp. 1099–1106, 1988.

    Article  Google Scholar 

  53. Sun, C., A fast stereo matching method, In: Proceedings of Digital Image Computing: Techniques and Applications, Massey University, Auckland, New Zeland, December 10–12, 1997, pp. 95–100.

    Google Scholar 

  54. Ramirez, J., Mitra, S., and Morales, J., Visualization of the three dimensional topography of the optic nerve head through a passive stereo vision model, J. Electron. Imaging, Vol. 8, No. 1, pp. 92–97, 1999.

    Article  Google Scholar 

  55. Smith, P.W. and Nandhakumar, N., An improved power cepstrum based stereo correspondence method for textured scenes, IEEE Trans. Patt. Anal. Machine Intell., Vol. 18, No. 3, pp. 338–348, Mar. 1996.

    Article  Google Scholar 

  56. Pratt, W. K., Digital Image Processing, 2nd edn., Wiley-Interscience, New York, pp. 112–117, 1991.

    MATH  Google Scholar 

  57. Kirbas, C. and Quek, F. K. H., Vessel extraction techniques and algorithms: A survey, In: 3rd Symposium on Bioinfomatics and BioEngineering, Bethesda, Maryland, March 2003, pp. 238–245.

    Google Scholar 

  58. Kass, M., Witkin, A., and Terzoopoulos, D., Snakes: Active contour models, Int. J. Comp. Vision, Vol. 1, pp. 321–331, 1988.

    Article  Google Scholar 

  59. Osher, S. and Sethian, J. A., Fronts propagating with curvature dependent speed: Algorithms based on hamilton-jacobi formulation, JCP, Vol. 79, pp. 12–49, 1988.

    MATH  MathSciNet  Google Scholar 

  60. Chaudhuri, S. C., Katz, N., Nelson, M., and Goldbaum, M., Detection of blood vessels in retinal images using two dimensional blood vessel filters, IEEE Trans. Med. Imaging, Vol. 8, pp. 263–269, 1989.

    Article  Google Scholar 

  61. Wood, S. L., Qu, G., and Roloff, L. W., Detection and labeling of retinal vessels for longitudinal studies, In: IEEE International Conference on Image Processing, 1995, Vol. 3, pp. 164–167.

    Article  Google Scholar 

  62. Hoover, A., Kouznetsova, V., and Goldbaum, M., Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Trans. Med. Imaging, Vol. 19, pp. 203–210, 2000.

    Article  Google Scholar 

  63. Zana, F. and Klein, J. C., Robust segmentation of vessels from retinal angiography, in IEEE International Conference on Digital Signal Processing, 1997, Vol. 2, pp. 1087–1090.

    Article  Google Scholar 

  64. Tolias, Y. and Panas, S. M., A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering, IEEE Trans. Med. Imaging, Vol. 17, pp. 263–273, 1998.

    Article  Google Scholar 

  65. Zhou, L., Rzeszotarski, M. S., Singerman, L. J., and Chokreff, J. M., The detection and quantification of retinopathy using digital angiograms, IEEE Trans. Med. Imaging, Vol. 13, pp. 619–626, 1994.

    Article  Google Scholar 

  66. Rosenfeld, A., On connectivity properties of grayscale pictures, Patt. Recogn., Vol. 16, No. 1, pp. 47–50, 1983.

    Article  Google Scholar 

  67. Wang, W., Sun, C., and Chao, H., Color image segmentation and understanding through connected components, In: Proceedings of 1997 IEEE Int’l Conf. on Systems, Man, and Cybernetics, Orlando, FL, Oct. 12–15, 1997, Vol. 2, pp. 1089–1093.

    Google Scholar 

  68. Castellanos, R., Castillo, H., and Mitra, S., Performance of nonlinear methods in medical image restoration, SPIE Proc. Nonlinear Image Process., Vol. 3646, 1999.

    Google Scholar 

  69. Jain, A. K. and Dubes, R. C., Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ, 1988.

    MATH  Google Scholar 

  70. Johnson, K. A., and Becker, J. A. The Whole Brain Atlas, available at: http://www.med.harvard.edu/AANLIB/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Yang, S., Mitra, S. (2005). Statistical and Adaptive Approaches for Optimal Segmentation in Medical Images. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds) Handbook of Biomedical Image Analysis. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/0-306-48606-7_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48606-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48605-0

  • Online ISBN: 978-0-306-48606-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics