Nothing Special   »   [go: up one dir, main page]

Skip to main content

Challenges and Trends in Multimodal Fall Detection for Healthcare

  • Book
  • © 2020

Overview

  • Covers challenging issues and current trends for designing fall detection systems using a multimodal approach
  • Provides novel implementations of sensor technologies, artificial intelligence, machine learning, and statistics for fall detection systems
  • Describes and discusses a common, public dataset, especially gathered for multimodal fall detection

Part of the book series: Studies in Systems, Decision and Control (SSDC, volume 273)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book focuses on novel implementations of sensor technologies, artificial intelligence, machine learning, computer vision and statistics for automated, human fall recognition systems and related topics using data fusion.


It includes theory and coding implementations to help readers quickly grasp the concepts and to highlight the applicability of this technology. For convenience, it is divided into two parts. The first part reviews the state of the art in human fall and activity recognition systems, while the second part describes a public dataset especially curated for multimodal fall detection. It also gathers contributions demonstrating the use of this dataset and showing examples.
 

This book is useful for anyone who is interested in fall detection systems, as well as for those interested in solving challenging, signal recognition, vision and machine learning problems. Potential applications include health care, robotics, sports, human–machine interaction, among others.




Similar content being viewed by others

Keywords

Table of contents (10 chapters)

  1. Challenges and Solutions on Human Fall Detection and Classification

  2. Reviews and Trends on Multimodal Healthcare

Editors and Affiliations

  • Facultad de Ingeniería, Universidad Panamericana, Mexico City, Mexico

    Hiram Ponce, Lourdes Martínez-Villaseñor, Jorge Brieva, Ernesto Moya-Albor

Bibliographic Information

  • Book Title: Challenges and Trends in Multimodal Fall Detection for Healthcare

  • Editors: Hiram Ponce, Lourdes Martínez-Villaseñor, Jorge Brieva, Ernesto Moya-Albor

  • Series Title: Studies in Systems, Decision and Control

  • DOI: https://doi.org/10.1007/978-3-030-38748-8

  • Publisher: Springer Cham

  • eBook Packages: Engineering, Engineering (R0)

  • Copyright Information: Springer Nature Switzerland AG 2020

  • Hardcover ISBN: 978-3-030-38747-1Published: 29 January 2020

  • Softcover ISBN: 978-3-030-38750-1Published: 29 January 2021

  • eBook ISBN: 978-3-030-38748-8Published: 28 January 2020

  • Series ISSN: 2198-4182

  • Series E-ISSN: 2198-4190

  • Edition Number: 1

  • Number of Pages: XIII, 259

  • Topics: Biomedical Engineering and Bioengineering, Computational Intelligence, Biomechanics

Publish with us