Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Synthesis and X-ray Structures of Polymeric Calcium Carboxylates

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reactions of calcium hydroxide with pivalic, 1-naphthoic, and 2-furancarboxylic acids afford the corresponding polymeric calcium carboxylates. Depending on the crystallization conditions, calcium pivalate is isolated as two different coordination polymers: [Ca3(Piv)6(DMF)2]n·0.635nC6H6·0.365nDMF (I) and [Ca(Рiv)(H2O)2.333(DMF)0.666]n·nРiv·0.333H2O (II). The synthesized calcium 1-naphthoate contains coordinated water molecules [Сa(Naph)2(H2O)2]n (III), and calcium furoate [Ca(Fur)2]n (IV) contains no ancillary ligands. The structures of compounds IIV are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2342790–2342793, respectively). The structures of compounds IIII are characterized by the 1D polymeric structure, and compound IV is the 3D polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Bennett, T., Geue, N., Timco, G., et al., Chem.-Eur. J., 2024, vol. 30, p. e202400432.

    Article  CAS  PubMed  Google Scholar 

  2. Darii, M., Leusen, J.V., Kravtsov, V.Ch., et al., Cryst. Growth Des., 2023, vol. 23, p. 6944.

    Article  CAS  Google Scholar 

  3. Pavlov, D.I., Yu, X., Ryadun, A.A., et al., Food Chem., 2024, vol. 445, p. 138747. https://doi.org/10.1016/j.foodchem.2024.138747

    Article  CAS  PubMed  Google Scholar 

  4. Lysova, A.A., Samsonenko, D.G., Dorovatovskii, P.V., et al., J. Am. Chem. Soc., 2019, vol. 141, p. 17260.

    Article  CAS  PubMed  Google Scholar 

  5. Bondarenko, G.N., Ganina, O.G., Lysova, A.A., et al., J. CO 2 Util., 2021, vol. 53, p. 101718.

  6. Lysova, A.A., Samsonenko, D.G., Kovalenko, K.A., et al., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, p. 20561.

    Article  CAS  PubMed  Google Scholar 

  7. Podgornii, D., Leusen, J.V., Kravtsov, V.Ch., et al., CrystEngComm, 2021, vol. 23, p. 153.

    Article  Google Scholar 

  8. Alotaibi, R., Fowler, J.M., Lockyer, S.J., et al., Angew. Chem., Int. Ed. Engl., 2021, vol. 133, p. 9575.

    Article  Google Scholar 

  9. Bazhina, E.S., Gogoleva, N.V., Zorina-Tikhonova, E.N., et al., J. Struct. Chem., 2019, vol. 60, p. 855. https://doi.org/10.1134/S0022476619060015

    Article  CAS  Google Scholar 

  10. Sidorov, A.A., Gogoleva, N.V., Bazhina, E.S., et al., Pure Appl. Chem., 2020, vol. 92, p. 1093.

  11. Bazhina, E.S., Nikiforova, M.E., Aleksandrov, G.G., et al., Russ. Chem. Bull., 2011, vol. 60, p. 797. https://doi.org/10.1007/s11172-011-0127-6

    Article  CAS  Google Scholar 

  12. Bushuev, V.A., Gogoleva, N.V., Nikolaevskii, S.A., et al., Molecules, 2024, vol. 29, p. 2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bondarenko, M.A., Abramov, P.A., Novikov, A.S., et al., Polyhedron, 2022, vol. 214, p. 115644.

    Article  CAS  Google Scholar 

  14. Bondarenko, M.A., Novikov, A.S., and Adonin, S.A., Russ. J. Inorg. Chem., 2021, vol. 66, p. 814. https://doi.org/10.1134/S0036023621060061

    Article  CAS  Google Scholar 

  15. Zaguzin, A.S., Sukhikh, T.S., Kolesov, B.A., et al., Polyhedron, 2022, vol. 212, p. 115587.

    Article  CAS  Google Scholar 

  16. Bondarenko, M.A., Novikov, A.S., Korolkov, I.V., et al., Inorg. Chim. Acta, 2021, vol. 524, p. 120436.

    Article  CAS  Google Scholar 

  17. Bondarenko, M.A., Novikov, A.S., Sukhikh, T.S., et al., J. Mol. Struct., 2021, vol. 1244, p. 130942.

    Article  CAS  Google Scholar 

  18. Polyukhov, D.M., Kudriavykh, N.A., Gromilov, S.A., et al., ACS Energy Lett., 2022, vol. 7, p. 4336.

    Article  CAS  Google Scholar 

  19. Yu, X., Ryadun, A.A., Potapov, A.S., Fedin, V.P., et al., J. Hazard. Mater., 2023, vol. 452, p. 131289.

    Article  CAS  PubMed  Google Scholar 

  20. Yu, X., Ryadun, A.A., Pavlov, D.I., et al., Angew. Chem., Int. Ed. Engl., 2023, vol. 62, p. 202306680.

    Article  Google Scholar 

  21. Yu, X., Ryadun, A.A., Pavlov, D.I., et al., Adv. Mater., 2024, vol. 36, p. 2311939.

    Article  CAS  Google Scholar 

  22. Nehrkorn, J., Valuev, I.A., Kiskin, M.A., et al., J. Mater. Chem., vol. 9, p. 9446.

  23. Jiang, G., Osman, S., Senthil, R.A., et al., J. Energy Storage, 2022, vol. 49, p. 104071.

    Article  Google Scholar 

  24. Dong, K., Liang, J., Wang, Y., et al., ACS Catal., 2022, vol. 12, no. 10, p. 6092.

    Article  CAS  Google Scholar 

  25. Zhang, Y., Li, J., Zhao, W., et al., Adv. Mater., 2022, vol. 34, no. 6, p. 2108114.

    Article  CAS  Google Scholar 

  26. Kong, Y.-X., Di, Y.-Y., Yang, W.-W., et al., J. Chem. Eng. Data, 2009, vol. 54, no. 8, p. 2256.

    Article  CAS  Google Scholar 

  27. Mukherjee, S., Chen, S., Bezrukov, A.A., et al., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, p. 16188.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, W., Lemaire, R., Bensakhria, A., and Luart, D., J. Anal. Appl. Pyrolysis, 2022, vol. 163, p. 105479.

    Article  CAS  Google Scholar 

  29. Zeng, L., Huang, L., Wang, Z., et al., Angew. Chem., Int. Ed. Engl., 2021, vol. 60, no. 44, p. 23569. https://doi.org/10.1002/anie.202108076

    Article  CAS  PubMed  Google Scholar 

  30. Yang, J., Trickett, C.A., Alahmad, S.B., et al., J. Am. Chem. Soc., 2017, vol. 139, no. 24, p. 8118.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, W., Low, N.W.L., Feng, B., et al., Environ. Sci. Technol., 2010, vol. 44, no. 2, p. 841.

    Article  CAS  PubMed  Google Scholar 

  32. Karppinen, M., Fjellvåg, H., Konno, T., et al., Chem. Mater., 2004, vol. 16, no. 14, p. 2790.

    Article  CAS  Google Scholar 

  33. Tahashi, M., Takahashi, M., and Goto, H., J. Am. Cer-am. Soc., 2017, vol. 101, no. 4, p. 1393.

    Google Scholar 

  34. Tahashi, M., Tanimoto, T., Goto, H., et al., J. Am. C-eram. Soc., 2010, vol. 93, no. 10, p. 2915.

    Article  Google Scholar 

  35. Cambridge Structural Database. CSD Version 5.45 (November 2023).

  36. Banerjee, D., Wang, H., Gong, Q., et al., Chem. Sci., 2016, vol. 7, p. 759.

    Article  CAS  PubMed  Google Scholar 

  37. Plonka, A.M., Chen, X., Wang, H., et al., Chem. Mater., 2016, vol. 28, no. 6, p. 1636.

    Article  CAS  Google Scholar 

  38. Lin, Y., Zhang, J., Pandey, H., et al., J. Mater. Chem. A, 2021, vol. 9, p. 26202.

    Article  CAS  Google Scholar 

  39. Plonka, A.M., Banerjee, D., Woerner, W.R., et al., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, no. 6, p. 1692.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, X., Plonka, A.M., Banerjee, D., et al., J. Am. Chem. Soc., 2015, vol. 137, no. 22, p. 7007.

    Article  CAS  PubMed  Google Scholar 

  41. Furman, J.D., Burwood, R.P., Tang, M., et al., J. Mater. Chem., 2011, vol. 21, p. 6595.

    Article  CAS  Google Scholar 

  42. Yin, Y.-J., Zhao, H., Zhang, L., et al., Chem. Mater., 2021, vol. 33, no. 18, p. 7272.

    Article  CAS  Google Scholar 

  43. Wei, Z.-W., Chen, C.-X., Zheng, S.-P., et al., Inorg. Chem., 2016, vol. 55, no. 15, p. 7311.

    Article  CAS  PubMed  Google Scholar 

  44. Wu, Z.-F., Tan, B., Fu, Z.-H., et al., Chem. Sci., 2022, vol. 13, p. 1375.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Y.-X., Wang, H.-M., Meng, P., et al., Dalton Trans., 2021, vol. 50, p. 1740.

    Article  CAS  PubMed  Google Scholar 

  46. Bazaga-García, M., Colodrero, R.M.P., Papadaki, M., et al., J. Am. Chem. Soc., 2014, vol. 136, no. 15, p. 5731.

    Article  PubMed  Google Scholar 

  47. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 3.

    Article  Google Scholar 

  49. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3.

    Article  Google Scholar 

  50. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.

    Article  CAS  Google Scholar 

  51. Llunell, M., Casanova, D., Cirena, J., et al., SHAPE. Version.2.1. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools, Barcelona: Universitat de Barcelona, 2013.

    Google Scholar 

  52. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Cryst. Growth Des., 2014, vol. 14, no. 7, p. 3576.

    Article  CAS  Google Scholar 

  53. Alexandrov, E.V., Shevchenko, A.P., and Blatov, V.A., Cryst. Growth Des., 2019, vol. 19, no. 5, p. 2604.

    Article  CAS  Google Scholar 

  54. Troyanov, S.I., Il’ina, E.G., and Dunaeva, K.M., Koord. Khim., 1991, vol. 17, no. 12, p. 1692.

    CAS  Google Scholar 

  55. Denisova, T.O., Amelchenkova, E.V., Pruss, I.V., et al., Russ. J. Inorg. Chem., 2006, vol. 51, no. 7, p. 1020. https://doi.org/10.1134/S0036023606070084

    Article  Google Scholar 

  56. Fomina, I.G., Chernyshev, V.V., Velikodnyi, Y.A., et al., Russ. Chem. Bull., 2013, vol. 62, p. 427. https://doi.org/10.1007/s11172-013-0057-6

    Article  CAS  Google Scholar 

  57. Golubnichaya, M.A., Sidorov, A.A., Fomina, I.G., et al., Russ. Chem. Bull., 1999, vol. 48, p. 1751. https://doi.org/10.1007/BF02494824

    Article  CAS  Google Scholar 

  58. Fomina, I.G., Aleksandrov, G.G., Dobrokhotova, Z.V., et al., Russ. Chem. Bull., 2006, vol. 55, p. 1909. https://doi.org/10.1007/s11172-006-0532-4

    Article  CAS  Google Scholar 

  59. Zorina-Tikhonova, E.N., Yambulatov, D.S., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, p. 75. https://doi.org/10.1134/S1070328420020104

    Article  CAS  Google Scholar 

  60. Shevchenko, A.P., Shabalin, A.A., Karpukhin, I.Yu., and Blatov, V.A., Sci. Technol. Adv. Mater. Methods, 2022, vol. 2, no. 1, p. 250.

    Google Scholar 

  61. Kim, H., Samsonenko, D.G., Yoon, M., et al., Chem. Commun., 2008, vol. 39, p. 4697.

    Article  Google Scholar 

  62. Wang, Z., Zhang, B., Fujiwara, H., et al., Chem. Commun., 2004, vol. 4, p. 416.

    Article  Google Scholar 

  63. Wang, Z., Zhang, Y., Kurmoo, M., et al., Aust. J. Chem., 2006, vol. 59, no. 9, p. 617.

    Article  CAS  Google Scholar 

  64. Yang, H.-J., Kou, H.-Z., Ni, Z.-H., et al., Inorg. Chem. Commun., 2005, vol. 8, no. 9, p. 846.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nikolaevskii.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Dedicated to Professor V.P. Fedin in celebration of his 70th birthday

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AI tools may have been used in the translation or editing of this article.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samulionis, A.S., Voronina, J.K., Melnikov, S.N. et al. Synthesis and X-ray Structures of Polymeric Calcium Carboxylates. Russ J Coord Chem 50, 757–767 (2024). https://doi.org/10.1134/S1070328424601043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328424601043

Keywords:

Navigation