Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Estimation of Energy Characteristics of Rainfall with an Optical Rain Gage

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Tasks which require information about energy characteristics of rains and methods for acquiring this information are briefly reviewed. A technique is suggested for estimating the kinetic energy transferred by hydrometeors based on microstructural characteristics of rainfall obtained with an OPTIOS optical precipitation gage. The technique is tested with measurement data received during a heavy rainfall occurred in Tomsk on July 22, 2023. The influence of different microstructural parameters on the amount of kinetic energy brought by raindrops to the underlying surface is analyzed. The results are compared with the values obtained by simplified methods. It is concluded that the capabilities of the optical precipitation gage make it a useful tool for solving tasks where accurate assessments of rainfall energy characteristics are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. J. Jose, A. Gires, I. Tchiguirinskaia, Y. Roustan, and D. Schertzer, “Scale invariant relationship between rainfall kinetic energy and intensity in Paris region: An evaluation using universal multifractal framework,” J. Hydrol. 609 (6), 127715 (2022). https://doi.org/10.1016/j.jhydrol.2022.127715

    Article  Google Scholar 

  2. M. H. Keegan, D. H. Nash, and M. M. Stack, “On erosion issues associated with the leading edge of wind turbine blades,” J. Phys. D: Appl. Phys. 46 (38), 383001 (2013). https://doi.org/10.1088/0022-3727/46/38/383001

    Article  ADS  Google Scholar 

  3. R. Herring, K. Dyer, F. Martin, and C. Ward, “The increasing importance of leading edge erosion and a review of existing protection solutions,” Renew. Sustain. Energy Rev. 115 (11), 109382 (2019). https://doi.org/10.1016/j.rser.2019.109382

    Article  Google Scholar 

  4. J.-M. Chang, H. Chena, B. J.-D. Jou, N.-Ch. Tsou, and G.-W. Lin, “Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan,” Eng. Geol. 231, 81–87 (2017). https://doi.org/10.1016/j.enggeo.2017.10.006

    Article  Google Scholar 

  5. V. Ferro, F. G. Carollo, and M. A. Serio, “Establishing a threshold for rainfall-induced landslides by a kinetic energy-duration relationship,” Hydrol. Process. 34 (16), 3571–3581 (2020). https://doi.org/10.1002/hyp.13821

    Article  ADS  Google Scholar 

  6. G. L. Shchepashchenko, Rainfall Erosion of Soil and Methods for Controlling It (V.V. Dokuchaev Soil Institute, 1991) [in Russian].

    Google Scholar 

  7. D. I. Shcheglov and N. S. Gorbunova, Erosion and Soil Protection (Voronezh State University, Voronezh, 2011) [in Russian].

    Google Scholar 

  8. M. Angulo-Martinez and A. Barros, “Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains,” Geomorphology 228, 28–40 (2015). https://doi.org/10.1016/j.geomorph.2014.07.036

    Article  ADS  Google Scholar 

  9. S. Yin, M. A. Nearing, P. Borrelli, and X. Xue, “Rainfall erosivity: An overview of methodologies and applications,” Vadose Zone J. 16 (12), 1–16 (2017). https://doi.org/10.2136/vzj2017.06.0131

    Article  Google Scholar 

  10. J. R. Angel, M. A. Palecki, and S. E. Hollinger, “Storm precipitation in the United States. Part II: Soil erosion characteristics,” J. Appl. Meteorol. 44 (6), 947–959 (2005). https://doi.org/10.1175/JAM2242.1

    Article  ADS  Google Scholar 

  11. L. Luo, L. Wang, T. Huo, M. Chen, J. Ma, S. Li, and J. Wu, “Raindrop size distribution and rain characteristics of the 2017 Great Hunan Flood observed with a Parsivel2 disdrometer,” Atmosphere 12 (12), 1556 (2021). https://doi.org/10.3390/atmos12121556

    Article  ADS  Google Scholar 

  12. D. S. Torres, C. Salles, J. D. Creutin, and G. Delrieu, “Quantification of soil detachment by raindrop impact: Performance of classical formulae of kinetic energy in mediterranean storms,” in Proc. of the Oslo Symposium “Erosion and Sediment Transport Monitoring Programmes in River Basins, Oslo, August 1992 (IAHS Publ., 1992), no. 210, pp. 115–124.

  13. Y. S. Lim, J. K. Kim, J. W. Kim, B. I. Park, and M. S. Kim, “Analysis of the relationship between the kinetic energy and intensity of rainfall in Daejeon, Korea,” Quatern. Int. 384, 107–117 (2015).https://doi.org/10.1016/j.quaint.2015.03.021

  14. P. I. A. Kinnell, “Raindrop-Impact-induced erosion processes and prediction: A review,” Hydrol. Process. 19 (14), 2815–2844 (2005). https://doi.org/10.1002/hyp.5788

    Article  ADS  Google Scholar 

  15. L. L. Johannsen, N. Zambon, P. Strauss, T. Dostal, M. Neumann, D. Zumr, T. A. Cochrane, G. Bloschl, and A. Klik, “Comparison of three types of laser optical disdrometers under natural rainfall conditions,” Hydrolog. Sci. J. 65 (4), 524–535 (2020). https://doi.org/10.1080/02626667.2019.1709641

    Article  Google Scholar 

  16. G. Catari, J. Latron, and F. Gallart, “Assessing the sources of uncertainty associated with the calculation of rainfall kinetic energy and erosivity—application to the Upper Llobregat Basin, NE Spain,” Hydrol. Earth Syst. Sci. 15 (3), 679–688 (2011).

    Article  ADS  Google Scholar 

  17. D. T. Meshesha, A. Tsunekawa, M. Tsubo, N. Haregeweyn, and E. Adgo, “Drop size distribution and kinetic energy load of rainfall events in the highlands of the Central Rift Valley, Ethiopia,” Hydrol. Sci. J. 59 (12), 2203–2215 (2014).https://doi.org/10.1080/02626667.2013.865030

  18. J. Nyssen, H. Vandenreyken, J. Poesen, J. Moeyersons, J. Deckers, M. Haile, C. Salles, and G. Govers, “Rainfall erosivity and variability in the Northern Ethiopian Highlands,” J. Hydrol. 311 (1-4), 172–187 (2005).https://doi.org/10.1016/j.jhydrol.2004.12.016

  19. A. W. Jayawardena and R. B. Rezaur, “Drop size distribution and kinetic energy load of rainstorms in Hong Kong,” Hydrol. Process 14 (6), 1069–1082 (2000).

    Article  ADS  Google Scholar 

  20. S. Assouline, “Drop size distributions and kinetic energy rates in variable intensity rainfall,” Water Resour. Res. 45 (11), W11501 (2009). https://doi.org/10.1029/2009WR007927

    Article  ADS  Google Scholar 

  21. R. Ramon, J. P. G. Minella, G. H. Merten, C. A. P. Barros, and T. Canale, “Kinetic energy estimation by rainfall intensity and its usefulness in predicting hydrosedimentological variables in a small rural catchment in southern Brazil,” Catena 148 Part 2, 176–184 (2017). https://doi.org/10.1016/j.catena.2016.07.015

    Article  Google Scholar 

  22. R. L. Fornis, H. R. Vermeulen, and J. D. Nieuwenhuis, “Kinetic energy-rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies,” J. Hydrol. 300 (1-4), 20–32 (2005). https://doi.org/10.1016/j.jhydrol.2004.04.027

    Article  ADS  Google Scholar 

  23. M. Mikos, D. Jost, and G. Petkovsek, “Rainfall and runoff erosivity in the Alpine climate of north Slovenia: A comparison of different estimation methods,” Hydrolog. Sci. J 51 (1), 115–126 (2006). https://doi.org/10.1623/hysj.51.1.115

    Article  Google Scholar 

  24. G. P. Lobo and C. A. Bonilla, “Sensitivity analysis of kinetic energy-intensity relationships and maximum rainfall intensities on rainfall erosivity using a long-term precipitation dataset,” J. Hydrol. 527 (8), 788–793 (2015). https://doi.org/10.1016/j.jhydrol.2015.05.045

    Article  Google Scholar 

  25. J. F. Sanchez-Moreno, C. M. Mannaerts, V. Jetten, and M. Loffler-Mang, “Rainfall kinetic energy-intensity and rainfall momentum-intensity relationships for Cape Verde,” J. Hydrol. 454–455, 131–140 (2012). https://doi.org/10.1016/j.jhydrol.2012.06.007

    Article  Google Scholar 

  26. Ch. Salles, J. Poesen, and D. S. Torres, “Kinetic energy of rain and its functional relationship with intensity,” J. Hydrol. 257 (1–4), 256–270 (2002). https://doi.org/10.1016/S0022-1694(01)00555-8

    Article  ADS  Google Scholar 

  27. W. H. Wischmeier and D. D. Smith, Predicting Rainfall Erosion Losses: A Guide To Conservation Planning. Handbook 537 (US Department of Agriculture, Washington, DC, 1978).

    Google Scholar 

  28. A. Van Dijk, L. A. Bruijnzeel, and C. J. Rosewell, “Rainfall intensity-kinetic energy relationships: A critical literature appraisal,” J. Hydrol. 261 (1–4), 1–23 (2002). https://doi.org/10.1016/S0022-1694(02)00020-3

    Article  ADS  Google Scholar 

  29. L. F. Komarova and L. A. Kormina, Engineering Approaches to Environmental Protection. Technique for Atmosphere and Hydrosphere Protection against Industrial Pollution (Altai, Barnaul, 2000) [in Russian].

  30. F. G. Carollo, M. A. Serio, V. Ferro, and A. Cerda, “Characterizing rainfall erosivity by kinetic power—median volume diameter relationship,” Catena 165, 12–21 (2018). https://doi.org/10.1016/j.catena.2018.01.024

    Article  Google Scholar 

  31. M. Angulo-Martinez, S. Begueria, B. Latorre, and M. Fernandez-Raga, “Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers,” Hydrol. Earth Syst. Sci. 22 (5), 2811–2837 (2018).

    Article  ADS  Google Scholar 

  32. A. Kruger and W. F. Krajewski, “Two-dimensional video disdrometer: A description,” J. Atmos. Ocean. Tech. 19 (5), 602–617 (2002). https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2

    Article  Google Scholar 

  33. M. Angulo-Martinez, S. Begueria, and J. Kysely, “Use of disdrometer data to evaluate the relation-ship of rainfall kinetic energy and intensity (KE-I),” Sci. Total Environ. 568, 83–94 (2016). https://doi.org/10.1016/j.scitotenv.2016.05.223

    Article  ADS  Google Scholar 

  34. V. V. Kal’chikhin, A. A. Kobzev, V. A. Korol’kov, and A. A. Tikhomirov, “Determination of the rate of fall of rain drops in measurements of their parameters by an optical rain gauge,” Meas. Tech. 59 (11), 1175–1180 (2017). https://doi.org/10.1007/s11018-017-1111-9

    Article  Google Scholar 

  35. V. V. Kalchikhin, A. A. Kobzev, A. A. Tikhomirov, and D. E. Filatov, “Rainfall measurements during summer 2020 with the optical precipitation gage,” Atmos. Ocean. Opt. 34 (3), 278–281 (2021).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Kalchikhin, A. A. Kobzev or A. A. Tikhomirov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalchikhin, V.V., Kobzev, A.A. & Tikhomirov, A.A. Estimation of Energy Characteristics of Rainfall with an Optical Rain Gage. Atmos Ocean Opt 37, 445–452 (2024). https://doi.org/10.1134/S1024856024700593

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856024700593

Keywords:

Navigation