Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Insect Cell Culture in Microfluidic Channels

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Microfluidic channels were constructed out of polydimethylsiloxane (PDMS) and used as culture vessels for ovary cells from the fall armyworm, Spodoptera frugiperda, (Sf9). PDMS allows cells to be visually inspected and provides excellent permeability to oxygen and carbon dioxide. Cells were grown in static culture conditions and observed every 24 hours for seven days. The growth rate in microchannels of varying volume (2.8 μl to 0.6 μl) was significantly slower in two sets of experiments (P<0.05 and P<0.001) than in a 25 ml tissue culture flask.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Burbaum and S. Skwish, Cell Culture Chamber for Multiple Well Plates. U.S. Patent 5,908,776. USA, Pharmacopeia, Inc. (Cranbury, NJ, 1999).

    Google Scholar 

  • J. Chalmers, Cytotechnology 20, 163 (1996).

    Google Scholar 

  • S. Charati and S. Stern, Macromolecules 31, 5529 (1998).

    Google Scholar 

  • N. Cowger, K. O'Connor, and J. Bivins, Enzyme Microb. Tech. 20, 326 (1997).

    Google Scholar 

  • N. Cowger, K. O'Connor, T. Hammond, D. Lacks, and G. Navar, Biotechnol. Bioeng. 64(1), 14 (1999).

    Google Scholar 

  • D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, Anal. Chem. 70, 4974 (1998).

    Google Scholar 

  • S. Ertel, B. Ratner, A. Kaul, M. Schway, and T. Horbett, J. Biomed. Mater. Res. 28, 667 (1994).

    Google Scholar 

  • K. Francis, K. O'Connor, and G. Spaulding, In Vitro Cell. Dev. B. 33A, 332 (1997).

    Google Scholar 

  • B. Jo, L. Lerberghe, K. Motsegood, and D. Beebe, J. Microelectromech. S. 9(1), 76 (1999).

    Google Scholar 

  • A.A. Kamen, C. Bedard, R. Tom, S. Perret, and B. Jardin, Biotechnol. Bioeng. 50, 36 (1996).

    Google Scholar 

  • D. O'Reilly, L. Miller, and V. Luckow, Baculovirus Expression Vectors: A Laboratory Manual (W. H. Freeman, New York, 1992).

    Google Scholar 

  • J. Ramsey and A. Berg, Eds., Micro Total Analysis Systems 2001 (Kluwer Academic Publishers, Boston, 2001).

    Google Scholar 

  • S. Raty, J.A. Davis, D.J. Beebe, S.L. Rodriguez-Zas, and M.B. Wheeler, Theriogenology 55(1), 241 (2001).

    Google Scholar 

  • C. Richardson, Ed. Baculovirus Expression Protocols. Methods in Molecular Biology (Totowa, Humana, 1995).

    Google Scholar 

  • E.J. Schlaeger, Cytotechnology 20, 57 (1996).

    Google Scholar 

  • W.D. Stein, Channels, Carriers, and Pumps: An Introduction to Membrane Transport (Academic Press, San Diego, CA, 1990).

    Google Scholar 

  • J. Tramper, J. Williams, and D. Joustra, Enzyme Microb. Tech. 8, 33 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, G., Ozers, M. & Beebe, D. Insect Cell Culture in Microfluidic Channels. Biomedical Microdevices 4, 161–166 (2002). https://doi.org/10.1023/A:1016088128057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016088128057

Navigation