Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Single part reconfigurable flow line design using fuzzy best worst method

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Reconfigurable manufacturing system (RMS) has evolved over past two decades as an answer to the threats posed by the existing manufacturing scenario of uncertainty in product volume and mix. The selection of an adequate configuration is of utmost importance as it affects various performance parameters contributing to the responsiveness, economy and reliability of the system. This paper proposes a comprehensive decision making approach for selecting an optimal configuration for the single part reconfigurable flow line considering cost, machine utilization, operational capability, machine reconfigurability, configuration convertibility and reliability as the performance measures. The problem has been formulated as a multi criteria decision making problem and fuzzy best worst method is employed to aggregate the linguistic preferences of the decision maker to obtain the optimal weights of each criteria. A case study has been presented to demonstrate the effectiveness of the proposed approach in the design of single part reconfigurable flow line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2̄
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maganha, I., Silva, C., Ferreira, L.M.D.: Understanding reconfigurability of manufacturing systems: An empirical analysis. J. Manuf. Syst. 48, 120–130 (2018)

    Article  Google Scholar 

  2. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H.: Reconfigurable manufacturing systems. CIRP Ann. 48(2), 527–540 (1999)

    Article  Google Scholar 

  3. Campos Sabioni, R., Daaboul, J., Le Duigou, J.: Concurrent optimisation of modular product and Reconfigurable Manufacturing System configuration: a customer-oriented offer for mass customisation. Int. J. Prod. Res. (2021). https://doi.org/10.1080/00207543.2021.1886369

    Article  Google Scholar 

  4. Bortolini, M., Galizia, F.G., Mora, C.: Reconfigurable manufacturing systems: Literature review and research trend. J. Manuf. Syst. 49, 93–106 (2018)

    Article  Google Scholar 

  5. Dou, J., Su, C., Zhao, X.: Mixed integer programming models for concurrent configuration design and scheduling in a reconfigurable manufacturing system. Concurr. Eng. 28(1), 32–46 (2020)

    Article  Google Scholar 

  6. Saliba, M.A., Azzopardi, S., Pace, C., Zammit, D.: A Heuristic Approach to Module Synthesis in the Design of Reconfigurable Manufacturing Systems. Int. J. Adv. Manuf. Technol. 102(9–12), 4337–4359 (2019)

    Article  Google Scholar 

  7. Ding, S., Zhang, H., Wu, W., Guo, E., Zhang, Y., Song, A.: A digital and structure-adaptive geometric error definition and modeling method of reconfigurable machine tool. Int. J. Adv. Manuf. Technol. 112(7), 2359–2371 (2021)

    Article  Google Scholar 

  8. Landers, R.G., Min, B.K., Koren, Y.: Reconfigurable machine tools. CIRP Ann. 50(1), 269–274 (2001)

    Article  Google Scholar 

  9. Moon, Y.M., Kota, S.: Design of reconfigurable machine tools. J. Manuf. Sci. Eng. 124(2), 480–483 (2002)

    Article  Google Scholar 

  10. Goyal, K.K., Jain, P.K., Jain, M.: A novel methodology to measure the responsiveness of RMTs in reconfigurable manufacturing system. J. Manuf. Syst. 32(4), 724–730 (2013)

    Article  Google Scholar 

  11. Huang, S., Xu, Z., Wang, G., Zeng, C., Yan, Y.: Reconfigurable machine tools design for multi-part families. Int. J. Adv. Manuf. Technol. 105(1), 813–829 (2019)

    Article  Google Scholar 

  12. Moghaddam, S.K., Houshmand, M., Saitou, K., Fatahi Valilai, O.: Configuration design of scalable reconfigurable manufacturing systems for part family. Int. J. of Prod. Res. 58(10), 2974–2996 (2020)

    Article  Google Scholar 

  13. Goyal, K.K., Jain, P.K., Jain, M.: A comprehensive approach to operation sequence similarity-based part family formation in the reconfigurable manufacturing system. Int. J. of Prod. Res. 51(6), 1762–1776 (2013)

    Article  Google Scholar 

  14. Son, S.Y., Olsen, T.L., Yip-Hoi, D.: An approach to scalability and line balancing for reconfigurable manufacturing systems. Integr. Manuf. Syst. 12(7), 500–511 (2001)

    Article  Google Scholar 

  15. Youssef, A.M., ElMaraghy, H.A.: Assessment of manufacturing systems reconfiguration smoothness. Int. J. Adv. Manuf. Technol. 30(1–2), 174–193 (2006)

    Article  Google Scholar 

  16. Dou, J., Dai, X., Meng, Z.: Graph theory-based approach to optimize single-product flow-line configurations of RMS. Int. J. Adv. Manuf. Technol. 41(9–10), 916–931 (2009)

    Article  Google Scholar 

  17. Goyal, K.K., Jain, P.K., Jain, M.: Optimal configuration selection for reconfigurable manufacturing system using NSGA II and TOPSIS. Int. J. of Prod. Res. 50(15), 4175–4191 (2012)

    Article  Google Scholar 

  18. Dou, J., Li, J., Xia, D., Zhao, X.: A multi-objective particle swarm optimisation for integrated configuration design and scheduling in reconfigurable manufacturing system. J. of Prod. Res Int (2020). https://doi.org/10.1080/00207543.2020.1756507

    Article  Google Scholar 

  19. Asghar, E., Uz Zaman, U.K., Baqai, A.A., Homri, L.: Optimum machine capabilities for reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 95(9), 4397–4417 (2018)

    Article  Google Scholar 

  20. Prasad, D., Jayswal, S.C.: Assessment of a reconfigurable manufacturing system. Benchmark. Int. J. 28(5), 1558–1575 (2019)

    Article  Google Scholar 

  21. Gu, X., Guo, W., Jin, X.: Performance evaluation for manufacturing systems under control-limit maintenance policy. J. Manuf. Syst. 55, 221–232 (2020)

    Article  Google Scholar 

  22. Abdi, M.R., Labib, A.W.: A design strategy for reconfigurable manufacturing systems (RMSs) using analytical hierarchical process (AHP): A case study. Int. J. of Prod. Res. 41(10), 2273–2299 (2003)

    Article  Google Scholar 

  23. Abdi, M.R., Labib, A.W.: Grouping and selecting products: the design key of reconfigurable manufacturing systems (RMSs). Int. J. of Prod. Res. 42(3), 521–546 (2004)

    Article  Google Scholar 

  24. Son, S. Y.: Design Principles and Methodologies for Reconfigurable Machining Systems: [Ph. D. Dissertation]. Michigan: University of Michigan (2000)

  25. Ashraf, M., Hasan, F.: Configuration selection for a reconfigurable manufacturing flow line involving part production with operation constraints. Int. J. Adv. Manuf. Technol. 98(5–8), 2137–2156 (2018)

    Article  Google Scholar 

  26. Maganha, I., Silva, C., Ferreira, L.M.D.: The layout design in reconfigurable manufacturing systems: a literature review. Int. J. Adv. Manuf. Technol. 105(1), 683–700 (2019)

    Article  Google Scholar 

  27. Dou, J., Li, J., Su, C.: Bi-objective optimization of integrating configuration generation and scheduling for reconfigurable flow lines using NSGA-II. Int. J. Adv. Manuf. Technol. 86(5–8), 1945–1962 (2016)

    Article  Google Scholar 

  28. Moghaddam, S.K., Houshmand, M., Fatahi Valilai, O.: Configuration design in scalable reconfigurable manufacturing systems (RMS): A case of single-product flow line (SPFL). Int. J. of Prod. Res. 56(11), 3932–3954 (2018)

    Article  Google Scholar 

  29. Maler-Speredelozzi, V., Koren, Y., Hu, S.J.: Convertibility measures for manufacturing systems. CIRP Ann. 52(1), 367–370 (2003)

    Article  Google Scholar 

  30. Wang, Y.M., Luo, Y., Hua, Z.: On the extent analysis method for fuzzy AHP and its applications. Eur. J. Oper. Res. 186(2), 735–747 (2008)

    Article  Google Scholar 

  31. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega 53, 49–57 (2015)

    Article  Google Scholar 

  32. Zadeh, L.A.: Fuzzy sets. Inf. and control. 8(3), 338–353 (1965)

    Article  Google Scholar 

  33. Guo, S., Zhao, H.: Fuzzy best-worst multi-criteria decision-making method and its applications. Know-Based Syst. 121, 23–31 (2017)

    Article  Google Scholar 

  34. Kaufman, A., Gupta, M.M.: Introduction to fuzzy arithmetic. Van Nostrand Reinhold Company, New York (1991)

    Google Scholar 

  35. Adamo, J.M.: Fuzzy decision trees. Fuzzy Sets Syst. 4(3), 207–219 (1980)

    Article  Google Scholar 

  36. Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24(2), 143–161 (1981)

    Article  Google Scholar 

  37. Liou, T.S., Wang, M.J.J.: Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 50(3), 247–255 (1992)

    Article  Google Scholar 

  38. Cheng, C.H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95(3), 307–317 (1998)

    Article  Google Scholar 

  39. Chen, S. H.: Ranking generalized fuzzy number with graded mean integration. Proceedings of International fuzzy systems association world congress (1999)

  40. Chen, S.H., Hsieh, C.H.: Representation, ranking, distance, and similarity of LR type fuzzy number and application. Australian J. Intell. Process Syst. 6(4), 217–229 (2000)

    Google Scholar 

  41. Asady, B., Zendehnam, A.: Ranking fuzzy numbers by distance minimization. Appl. Math. Model. 31(11), 2589–2598 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Kumar Goyal.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Goyal, K.K., Batra, N.K. et al. Single part reconfigurable flow line design using fuzzy best worst method. OPSEARCH 59, 603–631 (2022). https://doi.org/10.1007/s12597-021-00550-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-021-00550-4

Keywords

Navigation