Abstract
The field of Immunology is one that has undergone great expansion in recent years. With the advent of new diagnostic modalities including a variety of genetic tests (discussed elsewhere in this journal), the ability to diagnose a patient with a primary immunodeficiency disorder (PIDD) has become a more streamlined process. With increased availability of genetic testing for those with suspected or known PIDD, there has been a significant increase in the number of genes associated with this group of disorders. This is of great importance as a misdiagnosis of these rare diseases can lead to a delay in what can be critical treatment options. At times, those options can include life-saving medications or procedures. Presentation of patients with PIDD can vary greatly based on the specific genetic defect and the part(s) of the immune system that is affected by the variation. PIDD disorders lead to varying levels of increased risk of infection ranging from a mild increase such as with selective IgA deficiency to a profound risk with severe combined immunodeficiency. These diseases can also cause a variety of other clinical findings including autoimmunity and gastrointestinal disease.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Availability of Data and Material
Material is found online and referenced accordingly.
References
Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A et al (2020) Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40(1):24–64
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM et al (2021) The ever-increasing array of novel inborn errors of immunity: an interim update by the IUIS Committee. J Clin Immunol 41(3):666–679
Bacchelli C, Moretti FA, Carmo M, Adams S, Stanescu HC, Pearce K et al (2017) Mutations in linker for activation of T cells (LAT) lead to a novel form of severe combined immunodeficiency. J Allergy Clin Immunol 139(2):634–42 e5
Keller B, Zaidman I, Yousefi OS, Hershkovitz D, Stein J, Unger S et al (2016) Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT. J Exp Med 213(7):1185–1199
Lev A, Lee YN, Sun G, Hallumi E, Simon AJ, Zrihen KS et al (2021) Inherited SLP76 deficiency in humans causes severe combined immunodeficiency, neutrophil and platelet defects. J Exp Med 218(3):e20201062
Oud MM, Tuijnenburg P, Hempel M, van Vlies N, Ren Z, Ferdinandusse S et al (2017) Mutations in EXTL3 cause neuro-immuno-skeletal dysplasia syndrome. Am J Hum Genet 100(2):281–296
Smits BM, Lelieveld PHC, Ververs FA, Turkenburg M, de Koning C, van Dijk M et al (2020) A dominant activating RAC2 variant associated with immunodeficiency and pulmonary disease. Clin Immunol 212:108248
Sharapova SO, Haapaniemi E, Sakovich IS, Kostyuchenko LV, Donko A, Dulau-Florea A et al (2019) Heterozygous activating mutation in RAC2 causes infantile-onset combined immunodeficiency with susceptibility to viral infections. Clin Immunol 205:1–5
Hsu AP, Donko A, Arrington ME, Swamydas M, Fink D, Das A et al (2019) Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 133(18):1977–1988
Lougaris V, Chou J, Beano A, Wallace JG, Baronio M, Gazzurelli L et al (2019) A monoallelic activating mutation in RAC2 resulting in a combined immunodeficiency. J Allergy Clin Immunol 143(4):1649–53 e3
Paganini I, Sestini R, Capone GL, Putignano AL, Contini E, Giotti I et al (2017) A novel PAX1 null homozygous mutation in autosomal recessive otofaciocervical syndrome associated with severe combined immunodeficiency. Clin Genet 92(6):664–668
Yamazaki Y, Urrutia R, Franco LM, Giliani S, Zhang K, Alazami AM et al (2020) PAX1 is essential for development and function of the human thymus. Sci Immunol 5(44):eaax1036
Bosticardo M, Yamazaki Y, Cowan J, Giardino G, Corsino C, Scalia G et al (2019) Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis. Am J Hum Genet 105(3):549–561
Beziat V, Li J, Lin JX, Ma CS, Li P, Bousfiha A et al (2019) A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Sci Immunol 3(24):eaat4956. https://doi.org/10.1126/sciimmunol.aat4956
Frey-Jakobs S, Hartberger JM, Fliegauf M, Bossen C, Wehmeyer ML, Neubauer JC et al (2018) ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol 3(24):eaat4941. https://doi.org/10.1126/sciimmunol.aat4941
Spencer S, Kostel Bal S, Egner W, Lango Allen H, Raza SI, Ma CA et al (2019) Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. J Exp Med 216(9):1986–1998
Schwerd T, Twigg SRF, Aschenbrenner D, Manrique S, Miller KA, Taylor IB et al (2017) A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. J Exp Med 214(9):2547–2562
Shahin T, Aschenbrenner D, Cagdas D, Bal SK, Conde CD, Garncarz W et al (2019) Selective loss of function variants in IL6ST cause hyper-IgE syndrome with distinct impairments of T-cell phenotype and function. Haematologica 104(3):609–621
Chen YH, Grigelioniene G, Newton PT, Gullander J, Elfving M, Hammarsjo A et al (2020) Absence of GP130 cytokine receptor signaling causes extended Stuve-Wiedemann syndrome. J Exp Med 217(3):e20191306
Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N et al (2019) Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet 104(6):1182–1201
Beziat V, Tavernier SJ, Chen YH, Ma CS, Materna M, Laurence A et al (2020) Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med 217(6):e20191804
Lyons JJ, Liu Y, Ma CA, Yu X, O’Connell MP, Lawrence MG et al (2017) ERBIN deficiency links STAT3 and TGF-beta pathway defects with atopy in humans. J Exp Med 214(3):669–680
Ma CA, Stinson JR, Zhang Y, Abbott JK, Weinreich MA, Hauk PJ et al (2017) Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet 49(8):1192–1201
Klammt J, Neumann D, Gevers EF, Andrew SF, Schwartz ID, Rockstroh D et al (2018) Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun 9(1):2105
Volpi S, Cicalese MP, Tuijnenburg P, Tool ATJ, Cuadrado E, Abu-Halaweh M et al (2019) A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency. J Allergy Clin Immunol 143(6):2296–2299
Brigida I, Zoccolillo M, Cicalese MP, Pfajfer L, Barzaghi F, Scala S et al (2018) T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood 132(22):2362–2374
Kahr WH, Pluthero FG, Elkadri A, Warner N, Drobac M, Chen CH et al (2017) Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun 8:14816
van der Crabben SN, Hennus MP, McGregor GA, Ritter DI, Nagamani SC, Wells OS et al (2016) Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J Clin Invest 126(8):2881–2892
Cottineau J, Kottemann MC, Lach FP, Kang YH, Vely F, Deenick EK et al (2017) Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest 127(5):1991–2006
Niehues T, Ozgur TT, Bickes M, Waldmann R, Schoning J, Brasen J et al (2020) Mutations of the gene FNIP1 associated with a syndromic autosomal recessive immunodeficiency with cardiomyopathy and pre-excitation syndrome. Eur J Immunol 50(7):1078–1080
Saettini F, Poli C, Vengoechea J, Bonanomi S, Orellana JC, Fazio G et al (2021) Absent B cells, agammaglobulinemia, and hypertrophic cardiomyopathy in folliculin-interacting protein 1 deficiency. Blood 137(4):493–499
Keller MD, Pandey R, Li D, Glessner J, Tian L, Henrickson SE, et al (2016) Mutation in IRF2BP2 is responsible for a familial form of common variable immunodeficiency disorder. J Allergy Clin Immunol 138(2):544–50 e4
Huppke P, Weissbach S, Church JA, Schnur R, Krusen M, Dreha-Kulaczewski S et al (2017) Activating de novo mutations in NFE2L2 encoding NRF2 cause a multisystem disorder. Nat Commun 8(1):818
Dimitrov B, Himmelreich N, Hipgrave Ederveen AL, Luchtenborg C, Okun JG, Breuer M et al (2018) Cutis laxa, exocrine pancreatic insufficiency and altered cellular metabolomics as additional symptoms in a new patient with ATP6AP1-CDG. Mol Genet Metab 123(3):364–374
Jansen EJ, Timal S, Ryan M, Ashikov A, van Scherpenzeel M, Graham LA et al (2016) ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun 7:11600
Ondruskova N, Honzik T, Vondrackova A, Stranecky V, Tesarova M, Zeman J et al (2020) Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation. J Inherit Metab Dis 43(4):694–700
Tvina A, Thomsen A, Palatnik A (2020) Prenatal and postnatal phenotype of a pathologic variant in the ATP6AP1 gene. Eur J Med Genet 63(6):103881
Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A et al (2019) Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest 129(3):1047–1060
Keller B, Shoukier M, Schulz K, Bhatt A, Heine I, Strohmeier V et al (2018) Germline deletion of CIN85 in humans with X chromosome-linked antibody deficiency. J Exp Med 215(5):1327–1336
Schubert D, Klein MC, Hassdenteufel S, Caballero-Oteyza A, Yang L, Proietti M et al (2018) Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). J Allergy Clin Immunol 141(4):1427–1438
Takeda AJ, Maher TJ, Zhang Y, Lanahan SM, Bucklin ML, Compton SR et al (2019) Human PI3Kgamma deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat Commun 10(1):4364
Thian M, Hoeger B, Kamnev A, Poyer F, Kostel Bal S, Caldera M et al (2020) Germline biallelic PIK3CG mutations in a multifaceted immunodeficiency with immune dysregulation. Haematologica 105(10):e488
Kuhny M, Forbes LR, Cakan E, Vega-Loza A, Kostiuk V, Dinesh RK et al (2020) Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID. J Clin Invest 130(8):4411–4422
Yeh TW, Okano T, Naruto T, Yamashita M, Okamura M, Tanita K et al (2020) APRIL-dependent lifelong plasmacyte maintenance and immunoglobulin production in humans. J Allergy Clin Immunol 146(5):1109–20 e4
Allenspach E, Torgerson TR (2016) Autoimmunity and primary immunodeficiency disorders. J Clin Immunol 36(Suppl 1):57–67
Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21
Fernandez IZ, Baxter RM, Garcia-Perez JE, Vendrame E, Ranganath T, Kong DS et al (2019) A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med 216(6):1255–1267
Zhang Z, Gothe F, Pennamen P, James JR, McDonald D, Mata CP et al (2019) Human interleukin-2 receptor beta mutations associated with defects in immunity and peripheral tolerance. J Exp Med 216(6):1311–1327
Yang L, Chen S, Zhao Q, Sun Y, Nie H (2019) The critical role of Bach2 in shaping the balance between CD4(+) T cell subsets in immune-mediated diseases. Mediators Inflamm 2019:2609737
Afzali B, Gronholm J, Vandrovcova J, O’Brien C, Sun HW, Vanderleyden I et al (2017) BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat Immunol 18(7):813–823
Serwas NK, Hoeger B, Ardy RC, Stulz SV, Sui Z, Memaran N et al (2019) Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun 10(1):3106
Fournier B, Tusseau M, Villard M, Malcus C, Chopin E, Martin E et al (2021) DEF6 deficiency, a Mendelian susceptibility to EBV infection, lymphoma, and autoimmunity. J Allergy Clin Immunol 147(2):740–3 e9
Hadjadj J, Castro CN, Tusseau M, Stolzenberg MC, Mazerolles F, Aladjidi N et al (2020) Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat Commun 11(1):5341
Thaventhiran JED, Lango Allen H, Burren OS, Rae W, Greene D, Staples E et al (2020) Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature 583(7814):90–95
Lee PY, Platt CD, Weeks S, Grace RF, Maher G, Gauthier K et al (2020) Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. J Allergy Clin Immunol 146(5):1194–200 e1
Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF et al (2016) A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med 213(2):155–165
Canna SW, Marsh RA (2020) Pediatric hemophagocytic lymphohistiocytosis. Blood 135(16):1332–1343
Ammann S, Schulz A, Krageloh-Mann I, Dieckmann NM, Niethammer K, Fuchs S et al (2016) Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood 127(8):997–1006
Gayden T, Sepulveda FE, Khuong-Quang DA, Pratt J, Valera ET, Garrigue A et al (2018) Germline HAVCR2 mutations altering TIM-3 characterize subcutaneous panniculitis-like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome. Nat Genet 50(12):1650–1657
Wegehaupt O, Gross M, Wehr C, Marks R, Schmitt-Graeff A, Uhl M et al (2020) TIM-3 deficiency presenting with two clonally unrelated episodes of mesenteric and subcutaneous panniculitis-like T-cell lymphoma and hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 67(6):e28302
Sonigo G, Battistella M, Beylot-Barry M, Ingen-Housz-Oro S, Franck N, Barete S et al (2020) HAVCR2 mutations are associated with severe hemophagocytic syndrome in subcutaneous panniculitis-like T-cell lymphoma. Blood 135(13):1058–1061
Chaweephisal P, Sosothikul D, Polprasert C, Wananukul S, Seksarn P (2021) Subcutaneous panniculitis-like T-cell lymphoma with hemophagocytic lymphohistiocytosis syndrome in children and its essential role of HAVCR2 gene mutation analysis. J Pediatr Hematol Oncol 43(1):e80–e84
Mace EM, Paust S, Conte MI, Baxley RM, Schmit MM, Patil SL et al (2020) Human NK cell deficiency as a result of biallelic mutations in MCM10. J Clin Invest 130(10):5272–5286
Baxley RM, Leung W, Schmit MM, Matson JP, Yin L, Oram MK et al (2021) Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun 12(1):1626
Castro CN, Rosenzwajg M, Carapito R, Shahrooei M, Konantz M, Khan A et al (2020) NCKAP1L defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. J Exp Med 217(12):e20192275
Cook SA, Comrie WA, Poli MC, Similuk M, Oler AJ, Faruqi AJ et al (2020) HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science 369(6500):202–207
Salzer E, Zoghi S, Kiss MG, Kage F, Rashkova C, Stahnke S et al (2020) The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity. Sci Immunol 5(49):eabc3979. https://doi.org/10.1126/sciimmunol.abc3979
Del Bel KL, Ragotte RJ, Saferali A, Lee S, Vercauteren SM, Mostafavi SA et al (2017) JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J Allergy Clin Immunol 139(6):2016–20 e5
Gruber CN, Calis JJA, Buta S, Evrony G, Martin JC, Uhl SA et al (2020) Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53(3):672–84 e11
Ma CA, Xi L, Cauff B, DeZure A, Freeman AF, Hambleton S et al (2017) Somatic STAT5b gain-of-function mutations in early onset nonclonal eosinophilia, urticaria, dermatitis, and diarrhea. Blood 129(5):650–653
Rajala HL, Eldfors S, Kuusanmaki H, van Adrichem AJ, Olson T, Lagstrom S et al (2013) Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood 121(22):4541–4550
Kelsen JR, Russo P, Sullivan KE (2019) Early-onset inflammatory bowel disease. Immunol Allergy Clin North Am 39(1):63–79
Kotlarz D, Marquardt B, Baroy T, Lee WS, Konnikova L, Hollizeck S et al (2018) Human TGF-beta1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nat Genet 50(3):344–348
Cuchet-Lourenco D, Eletto D, Wu C, Plagnol V, Papapietro O, Curtis J et al (2018) Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361(6404):810–813
Parlato M, Charbit-Henrion F, Pan J, Romano C, Duclaux-Loras R, Le Du MH et al (2018) Human ALPI deficiency causes inflammatory bowel disease and highlights a key mechanism of gut homeostasis. EMBO Mol Med 10(4):e8483
Li Q, Lee CH, Peters LA, Mastropaolo LA, Thoeni C, Elkadri A et al (2016) Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. gastroenterology 150(5):1196–207
Ashton JJ, Mossotto E, Stafford IS, Haggarty R, Coelho TAF, Batra A et al (2020) Genetic sequencing of pediatric patients identifies mutations in monogenic inflammatory bowel disease genes that translate to distinct clinical phenotypes. Clin Transl Gastroenterol 11(2):e00129
Ozen A, Comrie WA, Ardy RC, Dominguez Conde C, Dalgic B, Beser OF et al (2017) CD55 deficiency, early-onset protein-losing enteropathy, and thrombosis. N Engl J Med 377(1):52–61
Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T et al (2020) Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol 40(1):66–81
Jiang J, Zhao M, Chang C, Wu H, Lu Q (2020) Type I interferons in the pathogenesis and treatment of autoimmune diseases. Clin Rev Allergy Immunol 59(2):248–272
Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD et al (2016) Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 213(7):1163–1174
Alsohime F, Martin-Fernandez M, Temsah MH, Alabdulhafid M, Le Voyer T, Alghamdi M et al (2020) JAK inhibitor therapy in a child with inherited USP18 deficiency. N Engl J Med 382(3):256–265
Gruber C, Martin-Fernandez M, Ailal F, Qiu X, Taft J, Altman J et al (2020) Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J Exp Med 217(5):e20192319
Cho K, Yamada M, Agematsu K, Kanegane H, Miyake N, Ueki M et al (2018) Heterozygous mutations in OAS1 cause infantile-onset pulmonary alveolar proteinosis with hypogammaglobulinemia. Am J Hum Genet 102(3):480–486
Crow YJ, Manel N (2015) Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol 15(7):429–440
Uggenti C, Lepelley A, Depp M, Badrock AP, Rodero MP, El-Daher MT et al (2020) cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat Genet 52(12):1364–1372
Takenouchi T, Kosaki R, Niizuma T, Hata K, Kosaki K (2015) Macrothrombocytopenia and developmental delay with a de novo CDC42 mutation: yet another locus for thrombocytopenia and developmental delay. Am J Med Genet A 167A(11):2822–2825
Takenouchi T, Okamoto N, Ida S, Uehara T, Kosaki K (2016) Further evidence of a mutation in CDC42 as a cause of a recognizable syndromic form of thrombocytopenia. Am J Med Genet A 170A(4):852–855
Martinelli S, Krumbach OHF, Pantaleoni F, Coppola S, Amin E, Pannone L et al (2018) Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am J Hum Genet 102(2):309–320
Motokawa M, Watanabe S, Nakatomi A, Kondoh T, Matsumoto T, Morifuji K et al (2018) A hot-spot mutation in CDC42 (p.Tyr64Cys) and novel phenotypes in the third patient with Takenouchi-Kosaki syndrome. J Hum Genet 63(3):387–90
Uehara T, Suzuki H, Okamoto N, Kondoh T, Ahmad A, O’Connor BC et al (2019) Pathogenetic basis of Takenouchi-Kosaki syndrome: electron microscopy study using platelets in patients and functional studies in a Caenorhabditis elegans model. Sci Rep 9(1):4418
Bucciol G, Pillay B, Casas-Martin J, Delafontaine S, Proesmans M, Lorent N et al (2020) Systemic inflammation and myelofibrosis in a patient with Takenouchi-Kosaki syndrome due to CDC42 Tyr64Cys mutation. J Clin Immunol 40(4):567–570
Verboon JM, Mahmut D, Kim AR, Nakamura M, Abdulhay NJ, Nandakumar SK et al (2020) Infantile Myelofibrosis and myeloproliferation with CDC42 dysfunction. J Clin Immunol 40(4):554–566
Lam MT, Coppola S, Krumbach OHF, Prencipe G, Insalaco A, Cifaldi C et al (2019) A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J Exp Med 216(12):2778–2799
Gernez Y, de Jesus AA, Alsaleem H, Macaubas C, Roy A, Lovell D et al (2019) Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1beta inhibition. J Allergy Clin Immuno 144(4):1122–5 e6
He T, Huang Y, Ling J, Yang J (2020) A new patient with NOCARH syndrome due to CDC42 defect. J Clin Immunol 40(4):571–575
Bekhouche B, Tourville A, Ravichandran Y, Tacine R, Abrami L, Dussiot M et al (2020) A toxic palmitoylation of Cdc42 enhances NF-kappaB signaling and drives a severe autoinflammatory syndrome. J Allergy Clin Immunol 146(5):1201–4 e8
Szczawinska-Poplonyk A, Ploski R, Bernatowska E, Pac M (2020) A novel CDC42 mutation in an 11-year old child manifesting as syndromic immunodeficiency, autoinflammation, hemophagocytic lymphohistiocytosis, and malignancy: a case report. Front Immunol 11:318
Alehashemi S, Goldbach-Mansky R (2020) Human autoinflammatory diseases mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18. Front Immunol 11:1840
Yu CH, Moecking J, Geyer M, Masters SL (2018) Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice. J Mol Biol 430(2):142–152
Zhong FL, Mamai O, Sborgi L, Boussofara L, Hopkins R, Robinson K et al (2016) Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167(1):187–202 e17
Drutman SB, Haerynck F, Zhong FL, Hum D, Hernandez NJ, Belkaya S et al (2019) Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis. Proc Natl Acad Sci U S A 116(38):19055–19063
Grandemange S, Sanchez E, Louis-Plence P, Tran Mau-Them F, Bessis D, Coubes C et al (2017) A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis 76(7):1191–1198
Tao P, Sun J, Wu Z, Wang S, Wang J, Li W et al (2020) A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577(7788):109–114
Lalaoui N, Boyden SE, Oda H, Wood GM, Stone DL, Chau D et al (2020) Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577(7788):103–108
Damgaard RB, Walker JA, Marco-Casanova P, Morgan NV, Titheradge HL, Elliott PR et al (2016) The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166(5):1215–30 e20
Damgaard RB, Elliott PR, Swatek KN, Maher ER, Stepensky P, Elpeleg O et al (2019) OTULIN deficiency in ORAS causes cell type-specific LUBAC degradation, dysregulated TNF signalling and cell death. EMBO Mol Med 11(3):e9324
Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai WL et al (2016) Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A 113(36):10127–10132
Nabavi M, Shahrooei M, Rokni-Zadeh H, Vrancken J, Changi-Ashtiani M, Darabi K et al (2019) Auto-inflammation in a patient with a novel homozygous OTULIN mutation. J Clin Immunol 39(2):138–141
Damgaard RB, Jolin HE, Allison MED, Davies SE, Titheradge HL, McKenzie ANJ et al (2020) OTULIN protects the liver against cell death, inflammation, fibrosis, and cancer. Cell Death Differ 27(5):1457–1474
Aeschlimann FA, Batu ED, Canna SW, Go E, Gul A, Hoffmann P et al (2018) A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann Rheum Dis 77(5):728–735
Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T, Rohlfs M et al (2017) Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat Genet 49(5):742–752
Schim van der Loeff I, Sprenkeler EGG, Tool ATJ, Abinun M, Grainger A, Engelhardt KR et al (2020) Defective neutrophil development and specific granule deficiency caused by a homozygous splice-site mutation in SMARCD2. J Allergy Clin Immunol 147(6):2381–2385 e2
Tummala H, Walne AJ, Williams M, Bockett N, Collopy L, Cardoso S et al (2016) DNAJC21 mutations link a cancer-prone bone marrow failure syndrome to corruption in 60S ribosome subunit maturation. Am J Hum Genet 99(1):115–124
Dhanraj S, Matveev A, Li H, Lauhasurayotin S, Jardine L, Cada M et al (2017) Biallelic mutations in DNAJC21 cause Shwachman-Diamond syndrome. Blood 129(11):1557–1562
Morini J, Nacci L, Babini G, Cesaro S, Valli R, Ottolenghi A et al (2019) Whole exome sequencing discloses heterozygous variants in the DNAJC21 and EFL1 genes but not in SRP54 in 6 out of 16 patients with Shwachman-Diamond syndrome carrying biallelic SBDS mutations. Br J Haematol 185(3):627–630
D’Amours G, Lopes F, Gauthier J, Saillour V, Nassif C, Wynn R et al (2018) Refining the phenotype associated with biallelic DNAJC21 mutations. Clin Genet 94(2):252–258
Stepensky P, Chacon-Flores M, Kim KH, Abuzaitoun O, Bautista-Santos A, Simanovsky N et al (2017) Mutations in EFL1, an SBDS partner, are associated with infantile pancytopenia, exocrine pancreatic insufficiency and skeletal anomalies in a Shwachman-Diamond like syndrome. J Med Genet 54(8):558–566
Carapito R, Konantz M, Paillard C, Miao Z, Pichot A, Leduc MS et al (2017) Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. J Clin Invest 127(11):4090–4103
Bellanne-Chantelot C, Schmaltz-Panneau B, Marty C, Fenneteau O, Callebaut I, Clauin S et al (2018) Mutations in the SRP54 gene cause severe congenital neutropenia as well as Shwachman-Diamond-like syndrome. Blood 132(12):1318–1331
Schurch C, Schaefer T, Muller JS, Hanns P, Arnone M, Dumlin A et al (2021) SRP54 mutations induce congenital neutropenia via dominant-negative effects on XBP1 splicing. Blood 137(10):1340–1352
Haapaniemi EM, Fogarty CL, Keskitalo S, Katayama S, Vihinen H, Ilander M et al (2017) Combined immunodeficiency and hypoglycemia associated with mutations in hypoxia upregulated 1. J Allergy Clin Immunol 139(4):1391–3 e11
Kuhns DB, Fink DL, Choi U, Sweeney C, Lau K, Priel DL et al (2016) Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128(17):2135–2143
Standing AS, Malinova D, Hong Y, Record J, Moulding D, Blundell MP et al (2017) Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med 214(1):59–71
Pfajfer L, Mair NK, Jimenez-Heredia R, Genel F, Gulez N, Ardeniz O et al (2017) Mutations affecting the actin regulator WD repeat-containing protein 1 lead to aberrant lymphoid immunity. J Allergy Clin Immunol 142(5):1589–604 e11
Goos H, Fogarty CL, Sahu B, Plagnol V, Rajamaki K, Nurmi K et al (2019) Gain-of-function CEBPE mutation causes noncanonical autoinflammatory inflammasomopathy. J Allergy Clin Immunol 144(5):1364–1376
Arnadottir GA, Norddahl GL, Gudmundsdottir S, Agustsdottir AB, Sigurdsson S, Jensson BO et al (2018) A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun 9(1):4447
Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R et al (2017) Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med 214(1):73–89
Abolhassani H, Edwards ES, Ikinciogullari A, Jing H, Borte S, Buggert M et al (2017) Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med 214(1):91–106
Caorsi R, Rusmini M, Volpi S, Chiesa S, Pastorino C, Sementa AR et al (2017) CD70 deficiency due to a novel mutation in a patient with severe chronic EBV infection presenting as a periodic fever. Front Immunol 8:2015
Somekh I, Thian M, Medgyesi D, Gulez N, Magg T, Gallon Duque A et al (2019) CD137 deficiency causes immune dysregulation with predisposition to lymphomagenesis. Blood 134(18):1510–1516
Alosaimi MF, Hoenig M, Jaber F, Platt CD, Jones J, Wallace J, et al. Immunodeficiency and EBV-induced lymphoproliferation caused by 4–1BB deficiency. J Allergy Clin Immunol. 2019;144(2):574–83 e5
Daschkey S, Bienemann K, Schuster V, Kreth HW, Linka RM, Honscheid A et al (2016) Fatal lymphoproliferative disease in two siblings lacking functional FAAP24. J Clin Immunol 36(7):684–692
Platt CD, Fried AJ, Hoyos-Bachiloglu R, Usmani GN, Schmidt B, Whangbo J et al (2017) Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clin Immunol 183:142–144
Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki OY et al (2016) RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol 17(12):1352–1360
Winter S, Martin E, Boutboul D, Lenoir C, Boudjemaa S, Petit A et al (2018) Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO Mol Med 10(2):188–199
Mao H, Yang W, Latour S, Yang J, Winter S, Zheng J et al (2018) RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol 142(2):595–604 e16
Somekh I, Marquardt B, Liu Y, Rohlfs M, Hollizeck S, Karakukcu M et al (2018) Novel mutations in RASGRP1 are associated with immunodeficiency, immune dysregulation, and EBV-induced lymphoma. J Clin Immunol 38(6):699–710
Schober T, Magg T, Laschinger M, Rohlfs M, Linhares ND, Puchalka J et al (2017) A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun 8:14209
Maccari ME, Speckmann C, Heeg M, Reimer A, Casetti F, Has C et al (2019) Profound immunodeficiency with severe skin disease explained by concomitant novel CARMIL2 and PLEC1 loss-of-function mutations. Clin Immunol 208:108228
Wang Y, Ma CS, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S et al (2016) Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 213(11):2413–2435
Sorte HS, Osnes LT, Fevang B, Aukrust P, Erichsen HC, Backe PH et al (2016) A potential founder variant in CARMIL2/RLTPR in three Norwegian families with warts, molluscum contagiosum, and T-cell dysfunction. Mol Genet Genomic Med 4(6):604–616
Alazami AM, Al-Helale M, Alhissi S, Al-Saud B, Alajlan H, Monies D et al (2018) Novel CARMIL2 mutations in patients with variable clinical dermatitis, infections, and combined immunodeficiency. Front Immunol 9:203
Kurolap A, Eshach Adiv O, Konnikova L, Werner L, Gonzaga-Jauregui C, Steinberg M et al (2019) A unique presentation of infantile-onset colitis and eosinophilic disease without recurrent infections resulting from a novel homozygous CARMIL2 variant. J Clin Immunol 39(4):430–439
Atschekzei F, Jacobs R, Wetzke M, Sogkas G, Schroder C, Ahrenstorf G et al (2019) A novel CARMIL2 mutation resulting in combined immunodeficiency manifesting with dermatitis, fungal, and viral skin infections as well as selective antibody deficiency. J Clin Immunol 39(3):274–276
Magg T, Shcherbina A, Arslan D, Desai MM, Wall S, Mitsialis V et al (2019) CARMIL2 deficiency presenting as very early onset inflammatory bowel disease. Inflamm Bowel Dis 25(11):1788–1795
Yonkof JR, Gupta A, Rueda CM, Mangray S, Prince BT, Rangarajan HG et al (2020) A novel pathogenic variant in CARMIL2 (RLTPR) causing CARMIL2 deficiency and EBV-associated smooth muscle tumors. Front Immunol 11:884
Stremenova Spegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J et al (2020) Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood 136(9):1055–1066
Bravo Garcia-Morato M, Calvo Apalategi A, Bravo-Gallego LY, Blazquez Moreno A, Simon-Fuentes M, Garmendia JV et al (2019) Impaired control of multiple viral infections in a family with complete IRF9 deficiency. J Allergy Clin Immunol 144(1):309–12 e10
Hernandez N, Melki I, Jing H, Habib T, Huang SSY, Danielson J et al (2018) Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med 215(10):2567–2585
Hernandez N, Bucciol G, Moens L, Le Pen J, Shahrooei M, Goudouris E et al (2019) Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med 216(9):2057–2070
Duncan CJ, Mohamad SM, Young DF, Skelton AJ, Leahy TR, Munday DC et al (2015) Human IFNAR2 deficiency: lessons for antiviral immunity. Sci Transl Med 7(307):307ra154
Passarelli C, Civino A, Rossi MN, Cifaldi L, Lanari V, Moneta GM et al (2020) IFNAR2 deficiency causing dysregulation of NK cell functions and presenting with hemophagocytic lymphohistiocytosis. Front Genet 11:937
Ogunjimi B, Zhang SY, Sorensen KB, Skipper KA, Carter-Timofte M, Kerner G et al (2017) Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J Clin Invest 127(9):3543–3556
Lafaille FG, Harschnitz O, Lee YS, Zhang P, Hasek ML, Kerner G et al (2019) Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nat Med 25(12):1873–1884
Hait AS, Olagnier D, Sancho-Shimizu V, Skipper KA, Helleberg M, Larsen SM et al (2020) Defects in LC3B2 and ATG4A underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Sci Immunol 5(54):eabc2691
Witalisz-Siepracka A, Klein K, Prinz D, Leidenfrost N, Schabbauer G, Dohnal A et al (2018) Loss of JAK1 drives innate immune deficiency. Front Immunol 9:3108
Daza-Cajigal V, Albuquerque AS, Pearson J, Hinley J, Mason AS, Stahlschmidt J et al (2019) Loss of Janus associated kinase 1 alters urothelial cell function and facilitates the development of bladder cancer. Front Immunol 10:2065
Eletto D, Burns SO, Angulo I, Plagnol V, Gilmour KC, Henriquez F et al (2016) Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat Commun 7:13992
Kong XF, Martinez-Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick EK et al (2018) Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol 19(9):973–985
Israel L, Wang Y, Bulek K, Della Mina E, Zhang Z, Pedergnana V et al (2017) Human adaptive immunity rescues an inborn error of innate immunity. Cell 168(5):789–800 e10
Bucciol G, Moens L, Bosch B, Bossuyt X, Casanova JL, Puel A et al (2019) Lessons learned from the study of human inborn errors of innate immunity. J Allergy Clin Immunol 143(2):507–527
Author information
Authors and Affiliations
Contributions
1. Each author made substantial contributions to the conception or design of the work, or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work.
2. Each author drafted the work or revised it critically for important intellectual content.
3. Each author approved the version to be published.
4. Each author agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
Corresponding author
Ethics declarations
Ethics Approval
This is a review study and contains information previously published on the topic.
Consent for Publication
Appropriate use of references is completed throughout the manuscript.
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Redmond, M.T., Scherzer, R. & Prince, B.T. Novel Genetic Discoveries in Primary Immunodeficiency Disorders. Clinic Rev Allerg Immunol 63, 55–74 (2022). https://doi.org/10.1007/s12016-021-08881-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12016-021-08881-2