Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Clinical Management of Osteoporotic Fractures

  • Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review examines recent literature regarding the clinical management of fragility fractures, provides insight into new practice patterns, and discusses controversies in current management.

Recent Findings

There are declining rates of osteoporosis management following initial fragility fracture. Management of osteoporotic fractures via a multidisciplinary team reduces secondary fracture incidence and improves overall osteoporotic care. Anabolic agents (abaloparatide and teriparatide) are effective adjuvants to fracture repair, and have shown positive results in cases of re-fracture in spite of medical management (i.e., bisphosphonates). For AO 31-A1 and A2 intertrochanteric hip fractures (non-reverse obliquity), no clinical advantage of intramedullary fixation over the sliding hip screw (SHS) has been proven; SHS is more cost-effective.

Summary

As fragility fracture incidence continues to rise, orthopedic surgeons must play a more central role in the care of osteoporotic patients. Initiation of pharmacologic intervention is key to preventing subsequent fragility fractures, and may play a supportive role in initial fracture healing. While the media bombards patients with complications of medical therapy (atypical femur fractures, osteonecrosis of jaw, myocardial infarction), providers need to understand and communicate the low incidence of these complications compared with consequences of not initiating medical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Friedman SM, Mendelson DA. Epidemiology of fragility fractures. Clin Geriatr Med. 2014;30(2):175–81. https://doi.org/10.1016/j.cger.2014.01.001.

    Article  PubMed  Google Scholar 

  2. Cooper C, Campion G, Melton LJ 3rd. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2(6):285–9.

    Article  CAS  PubMed  Google Scholar 

  3. • Balasubramanian A, Tosi LL, Lane JM, Dirschl DR, Ho PR, O'Malley CD. Declining rates of osteoporosis management following fragility fractures in the U.S., 2000 through 2009. J Bone Joint Surg Am. 2014;96(7):e52–1-8. https://doi.org/10.2106/JBJS.L.01781. Retrospective review of 130,555 patients idenitifying declining rates of osteoporosis phamacologic treatment initiation following fragility fracture over a 9 year period. Less than one sixth of men and one third of women met clinical guidelines for medical evaluation and management after intial osteporotic fracture.

    Article  PubMed  Google Scholar 

  4. Rothberg DL, Lee MA. Internal fixation of osteoporotic fractures. Curr Osteoporos Reports. 2015;13(1):16–21. https://doi.org/10.1007/s11914-014-0245-9.

    Article  Google Scholar 

  5. Hasselman CT, Vogt MT, Stone KL, Cauley JA, Conti SF. Foot and ankle fractures in elderly white women. Incidence and risk factors. J Bone Joint Surg Am. 2003;85-A(5):820–4.

    Article  PubMed  Google Scholar 

  6. Olsen JR, Hunter J, Baumhauer JF. Osteoporotic ankle fractures. Orthop Clin North Am. 2013;44(2):225–41. https://doi.org/10.1016/j.ocl.2013.01.010.

    Article  PubMed  Google Scholar 

  7. Chen L, Yang L, Yao M, Cui XJ, Xue CC, Wang YJ, et al. Biomechanical characteristics of osteoporotic fracture healing in ovariectomized rats: a systematic review. PLoS One. 2016;11(4):e0153120. https://doi.org/10.1371/journal.pone.0153120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pesce V, Speciale D, Sammarco G, Patella S, Spinarelli A, Patella V. Surgical approach to bone healing in osteoporosis. Clin Cases Miner Bone Metab. 2009;6(2):131–5.

    PubMed  Google Scholar 

  9. van Wunnik BP, Weijers PH, van Helden SH, Brink PR, Poeze M. Osteoporosis is not a risk factor for the development of nonunion: a cohort nested case-control study. Injury. 2011;42(12):1491–4. https://doi.org/10.1016/j.injury.2011.08.019.

    Article  PubMed  Google Scholar 

  10. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. JAMA. 2002;288(15):1889–97.

    Article  PubMed  Google Scholar 

  11. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12. https://doi.org/10.1001/archinte.164.10.1108.

    Article  PubMed  Google Scholar 

  12. Rebolledo BJ, Unnanuntana A, Lane JM. A comprehensive approach to fragility fractures. J Orthop Trauma. 2011;25(9):566–73. https://doi.org/10.1097/BOT.0b013e3181f9b389.

    Article  PubMed  Google Scholar 

  13. Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther. 2005;27(1):1–11. https://doi.org/10.1016/j.clinthera.2004.12.020.

    Article  PubMed  Google Scholar 

  14. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int. 2005;16(12):2031–8. https://doi.org/10.1007/s00198-005-1992-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E. FRAX and its applications to clinical practice. Bone. 2009;44(5):734–43. https://doi.org/10.1016/j.bone.2009.01.373.

    Article  PubMed  Google Scholar 

  16. • Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81. https://doi.org/10.1007/s00198-014-2794-2. Clinician’s Guide is a useful multi-disciplinary tool developed by an expert committee of the National Osteoporosis Foundation along with medical experts. Thorough and inclusive information regarding risk assessment, diagnosis, pharmacologic treatment guidelines of osteoporosis. Also includes concise list of guidelines helpful as a quick reference.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bird ML, Pittaway JK, Cuisick I, Rattray M, Ahuja KD. Age-related changes in physical fall risk factors: results from a 3 year follow-up of community dwelling older adults in Tasmania, Australia. Int J Environ Res Public Health. 2013;10(11):5989–97. https://doi.org/10.3390/ijerph10115989.

    Article  PubMed  PubMed Central  Google Scholar 

  18. • Miller AN, Lake AF, Emory CL. Establishing a fracture liaison service: an orthopaedic approach. J Bone Joint Surg Am. 2015;97(8):675–81. https://doi.org/10.2106/JBJS.N.00957. A current concepts review outlining the important role of the fracture liason service in managing the underlying disease of osteoporosis rather than only treating the fracture. Highlights the importance of the comprehensive approach to patients with fragility fractures to prevent secondary fractures. Also provides helpul implementation strategies for healthcare administrators.

    Article  PubMed  Google Scholar 

  19. Hollis BW. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J Nutr. 2005;135(2):317–22.

    Article  CAS  PubMed  Google Scholar 

  20. Hollis BW, Wagner CL. Normal serum vitamin D levels. N Engl J Med. 2005;352(5):515–6; author reply -6. https://doi.org/10.1056/NEJM200502033520521.

    Article  CAS  PubMed  Google Scholar 

  21. Gaugris S, Heaney RP, Boonen S, Kurth H, Bentkover JD, Sen SS. Vitamin D inadequacy among post-menopausal women: a systematic review. QJM : Mon J Assoc Phys. 2005;98(9):667–76. https://doi.org/10.1093/qjmed/hci096.

    Article  CAS  Google Scholar 

  22. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81(3):353–73. https://doi.org/10.4065/81.3.353.

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Curr Osteoporos Reports. 2007;5(3):105–11.

    Article  Google Scholar 

  24. Moseley KF. Type 2 diabetes and bone fractures. Curr Opin Endocrinol Diabetes Obes. 2012;19(2):128–35. https://doi.org/10.1097/MED.0b013e328350a6e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137(4):231–43. https://doi.org/10.1067/mlc.2001.113504.

    Article  CAS  PubMed  Google Scholar 

  26. • Tarantino U, Piccirilli E, Fantini M, Baldi J, Gasbarra E, Bei R. Sarcopenia and fragility fractures: molecular and clinical evidence of the bone-muscle interaction. J Bone Joint Surg Am. 2015;97(5):429–37. https://doi.org/10.2106/JBJS.N.00648. A current concepts review that details the the relationship between sarcopenia and osteoporosis. Describes the bone-muscle unit and cites recent clinical evidence to show the intimate relationship between the two disease processes.

    Article  PubMed  Google Scholar 

  27. Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int. 2010;21(4):543–59. https://doi.org/10.1007/s00198-009-1059-y.

    Article  CAS  PubMed  Google Scholar 

  28. McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med Sci. 2014;69(5):576–83. https://doi.org/10.1093/gerona/glu012.

    Article  PubMed  PubMed Central  Google Scholar 

  29. • Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: current concepts and imaging implications. AJR Am J Roentgenol. 2015;205(3):W255–66. https://doi.org/10.2214/AJR.15.14635. A review article outlining the current imaging strategies and specific diagnostic criteria for sarcopenia. Useful sections for each imaging modality utilized that includes the best use for each and association clinical implications.

    Article  PubMed  Google Scholar 

  30. Crepaldi G, Maggi S. Sarcopenia and osteoporosis: a hazardous duet. J Endocrinol Investig. 2005;28(10 Suppl):66–8.

    CAS  Google Scholar 

  31. Chen CW, Huang TL, Su LT, Kuo YC, Wu SC, Li CY, et al. Incidence of subsequent hip fractures is significantly increased within the first month after distal radius fracture in patients older than 60 years. J Trauma Acute Care Surg. 2013;74(1):317–21.

    Article  PubMed  Google Scholar 

  32. Freeman AL, Tornetta P 3rd, Schmidt A, Bechtold J, Ricci W, Fleming M. How much do locked screws add to the fixation of "hybrid" plate constructs in osteoporotic bone? J Orthop Trauma. 2010;24(3):163–9. https://doi.org/10.1097/BOT.0b013e3181d35c29.

    Article  PubMed  Google Scholar 

  33. Turner IG, Rice GN. Comparison of bone screw holding strength in healthy bovine and osteoporotic human cancellous bone. Clin Mater. 1992;9(2):105–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am. 2009;91(8):1985–94. https://doi.org/10.2106/JBJS.H.01038.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Doornink J, Fitzpatrick DC, Madey SM, Bottlang M. Far cortical locking enables flexible fixation with periarticular locking plates. J Orthop Trauma. 2011;25(Suppl 1):S29–34. https://doi.org/10.1097/BOT.0b013e3182070cda.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Ricci WM, Streubel PN, Morshed S, Collinge CA, Nork SE, Gardner MJ. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma. 2014;28(2):83–9. https://doi.org/10.1097/BOT.0b013e31829e6dd0. This paper identified risk factors for nonunion in distal femur fractures such as shorter plate length, smoking, increase BMI, diabetes, open fracture, with plate length being one risk factor that can be modified by the surgeon.

    Article  PubMed  Google Scholar 

  37. Gardner MJ, Nork SE, Huber P, Krieg JC. Stiffness modulation of locking plate constructs using near cortical slotted holes: a preliminary study. J Orthop Trauma. 2009;23(4):281–7. https://doi.org/10.1097/BOT.0b013e31819df775.

    Article  PubMed  Google Scholar 

  38. Bottlang M, Fitzpatrick DC, Sheerin D, Kubiak E, Gellman R, Vande Zandschulp C, et al. Dynamic fixation of distal femur fractures using far cortical locking screws: a prospective observational study. J Orthop Trauma. 2014;28(4):181–8. https://doi.org/10.1097/01.bot.0000438368.44077.04.

    Article  PubMed  Google Scholar 

  39. Bogunovic L, Cherney SM, Rothermich MA, Gardner MJ. Biomechanical considerations for surgical stabilization of osteoporotic fractures. Orthop Clin North Am. 2013;44(2):183–200. https://doi.org/10.1016/j.ocl.2013.01.006.

    Article  PubMed  Google Scholar 

  40. Kammerlander C, Erhart S, Doshi H, Gosch M, Blauth M. Principles of osteoporotic fracture treatment. Best Pract Res Clin Rheumatol. 2013;27(6):757–69. https://doi.org/10.1016/j.berh.2014.02.005.

    Article  CAS  PubMed  Google Scholar 

  41. Wahnert D, Hoffmeier KL, von Oldenburg G, Frober R, Hofmann GO, Muckley T. Internal fixation of type-C distal femoral fractures in osteoporotic bone. J Bone Joint Surg Am. 2010;92(6):1442–52. https://doi.org/10.2106/JBJS.H.01722.

    Article  PubMed  Google Scholar 

  42. Wahnert D, Stolarczyk Y, Hoffmeier KL, Raschke MJ, Hofmann GO, Muckley T. Long-term stability of angle-stable versus conventional locked intramedullary nails in distal tibia fractures. BMC Musculoskelet Disord. 2013;14:66. https://doi.org/10.1186/1471-2474-14-66.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fliri L, Lenz M, Boger A, Windolf M. Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg. 2012;72(4):1098–101. https://doi.org/10.1097/TA.0b013e318248bfa7.

    Article  PubMed  Google Scholar 

  44. Cummings SR, Black DM, Rubin SM. Lifetime risks of hip, Colles', or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med. 1989;149(11):2445–8.

    Article  CAS  PubMed  Google Scholar 

  45. Levin LS, Rozell JC, Pulos N. Distal radius fractures in the elderly. J Am Acad Orthop Surg. 2017;25(3):179–87. https://doi.org/10.5435/JAAOS-D-15-00676.

    Article  PubMed  Google Scholar 

  46. Clayton RA, Gaston MS, Ralston SH, Court-Brown CM, McQueen MM. Association between decreased bone mineral density and severity of distal radial fractures. J Bone Joint Surg Am. 2009;91(3):613–9. https://doi.org/10.2106/JBJS.H.00486.

    Article  PubMed  Google Scholar 

  47. Fitzpatrick SK, Casemyr NE, Zurakowski D, Day CS, Rozental TD. The effect of osteoporosis on outcomes of operatively treated distal radius fractures. J Hand Surg. 2012;37(10):2027–34. https://doi.org/10.1016/j.jhsa.2012.06.025.

    Article  Google Scholar 

  48. Oyen J, Brudvik C, Gjesdal CG, Tell GS, Lie SA, Hove LM. Osteoporosis as a risk factor for distal radial fractures: a case-control study. J Bone Joint Surg Am. 2011;93(4):348–56. https://doi.org/10.2106/JBJS.J.00303.

    Article  PubMed  Google Scholar 

  49. Robin BN, Ellington MD, Jupiter DC, Brennan ML. Relationship of bone mineral density of spine and femoral neck to distal radius fracture stability in patients over 65. J Hand Surg. 2014;39(5):861–6 e3. https://doi.org/10.1016/j.jhsa.2014.01.043.

    Article  Google Scholar 

  50. Arora R, Lutz M, Deml C, Krappinger D, Haug L, Gabl M. A prospective randomized trial comparing nonoperative treatment with volar locking plate fixation for displaced and unstable distal radial fractures in patients sixty-five years of age and older. J Bone Joint Surg Am. 2011;93(23):2146–53. https://doi.org/10.2106/JBJS.J.01597.

    Article  PubMed  Google Scholar 

  51. Barton T, Chambers C, Bannister G. A comparison between subjective outcome score and moderate radial shortening following a fractured distal radius in patients of mean age 69 years. J Hand Surg Eur Vol. 2007;32(2):165–9. https://doi.org/10.1016/J.JHSB.2006.11.010.

    Article  CAS  PubMed  Google Scholar 

  52. Beumer A, McQueen MM. Fractures of the distal radius in low-demand elderly patients: closed reduction of no value in 53 of 60 wrists. Acta Orthop Scand. 2003;74(1):98–100. https://doi.org/10.1080/00016470310013743.

    Article  PubMed  Google Scholar 

  53. Leung F, Tu YK, Chew WY, Chow SP. Comparison of external and percutaneous pin fixation with plate fixation for intra-articular distal radial fractures. A randomized study. J Bone Joint Surg Am. 2008;90(1):16–22. https://doi.org/10.2106/JBJS.F.01581.

    Article  PubMed  Google Scholar 

  54. Pietri M, Lucarini S. The orthopaedic treatment of fragility fractures. Clin Cases Miner Bone Metab. 2007;4(2):108–16.

    PubMed  PubMed Central  Google Scholar 

  55. Falk SS, Mittlmeier T, Gradl G. Results of geriatric distal radius fractures treated by intramedullary fixation. Injury. 2016;47(Suppl 7):S31–S5. https://doi.org/10.1016/S0020-1383(16)30851-8.

    Article  PubMed  Google Scholar 

  56. Kannus P, Palvanen M, Niemi S, Sievanen H, Parkkari J. Rate of proximal humeral fractures in older Finnish women between 1970 and 2007. Bone. 2009;44(4):656–9. https://doi.org/10.1016/j.bone.2008.12.007.

    Article  PubMed  Google Scholar 

  57. Kancherla VK, Singh A, Anakwenze OA. Management of Acute Proximal Humeral Fractures. J Am Acad Orthop Surg. 2017;25(1):42–52. https://doi.org/10.5435/JAAOS-D-15-00240.

    Article  PubMed  Google Scholar 

  58. Kralinger F, Blauth M, Goldhahn J, Kach K, Voigt C, Platz A, et al. The influence of local bone density on the outcome of one hundred and fifty proximal humeral fractures treated with a locking plate. J Bone Joint Surg Am. 2014;96(12):1026–32. https://doi.org/10.2106/JBJS.M.00028.

    Article  PubMed  Google Scholar 

  59. Hinds RM, Garner MR, Tran WH, Lazaro LE, Dines JS, Lorich DG. Geriatric proximal humeral fracture patients show similar clinical outcomes to non-geriatric patients after osteosynthesis with endosteal fibular strut allograft augmentation. J Shoulder Elb Surg. 2015;24(6):889–96. https://doi.org/10.1016/j.jse.2014.10.019.

    Article  Google Scholar 

  60. Matassi F, Angeloni R, Carulli C, Civinini R, Di Bella L, Redl B, et al. Locking plate and fibular allograft augmentation in unstable fractures of proximal humerus. Injury. 2012;43(11):1939–42. https://doi.org/10.1016/j.injury.2012.08.004.

    Article  PubMed  Google Scholar 

  61. Konrad G, Audige L, Lambert S, Hertel R, Sudkamp NP. Similar outcomes for nail versus plate fixation of three-part proximal humeral fractures. Clin Orthop Relat Res. 2012;470(2):602–9. https://doi.org/10.1007/s11999-011-2056-y.

    Article  PubMed  Google Scholar 

  62. Zhu Y, Lu Y, Shen J, Zhang J, Jiang C. Locking intramedullary nails and locking plates in the treatment of two-part proximal humeral surgical neck fractures: a prospective randomized trial with a minimum of three years of follow-up. J Bone Joint Surg Am. 2011;93(2):159–68. https://doi.org/10.2106/JBJS.J.00155.

    Article  PubMed  Google Scholar 

  63. Boileau P, Krishnan SG, Tinsi L, Walch G, Coste JS, Mole D. Tuberosity malposition and migration: reasons for poor outcomes after hemiarthroplasty for displaced fractures of the proximal humerus. J Shoulder Elb Surg. 2002;11(5):401–12.

    Article  CAS  Google Scholar 

  64. Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int. 2009;20(10):1633–50. https://doi.org/10.1007/s00198-009-0920-3.

    Article  CAS  PubMed  Google Scholar 

  65. Dy CJ, Dossous PM, Ton QV, Hollenberg JP, Lorich DG, Lane JM. The medical orthopaedic trauma service: an innovative multidisciplinary team model that decreases in-hospital complications in patients with hip fractures. J Orthop Trauma. 2012;26(6):379–83. https://doi.org/10.1097/BOT.0b013e3182242678.

    Article  PubMed  Google Scholar 

  66. Friedman SM, Mendelson DA, Bingham KW, Kates SL. Impact of a comanaged geriatric fracture center on short-term hip fracture outcomes. Arch Intern Med. 2009;169(18):1712–7. https://doi.org/10.1001/archinternmed.2009.321.

    Article  PubMed  Google Scholar 

  67. Kammerlander C, Gosch M, Blauth M, Lechleitner M, Luger TJ, Roth T. The Tyrolean geriatric fracture center: an orthogeriatric co-management model. Zeitschrift fur Gerontologie und Geriatrie. 2011;44(6):363–7. https://doi.org/10.1007/s00391-011-0253-7.

    Article  CAS  PubMed  Google Scholar 

  68. Kammerlander C, Roth T, Friedman SM, Suhm N, Luger TJ, Kammerlander-Knauer U, et al. Ortho-geriatric service--a literature review comparing different models. Osteoporos Int. 2010;21(Suppl 4):S637–46. https://doi.org/10.1007/s00198-010-1396-x.

    Article  CAS  PubMed  Google Scholar 

  69. Grosso MG, Danoff JR, Padgett DE, Iorio R, Macaulay WB. The cemented unipolar prosthesis for the Management of Displaced Femoral Neck Fractures in the dependent Osteopenic elderly. J Arthroplast. 2016;31(5):1040–6. https://doi.org/10.1016/j.arth.2015.11.029.

    Article  Google Scholar 

  70. Blomfeldt R, Tornkvist H, Ponzer S, Soderqvist A, Tidermark J. Comparison of internal fixation with total hip replacement for displaced femoral neck fractures. Randomized, controlled trial performed at four years. J Bone Joint Surg Am. 2005;87(8):1680–8. https://doi.org/10.2106/JBJS.D.02655.

    Article  PubMed  Google Scholar 

  71. Blomfeldt R, Tornkvist H, Ponzer S, Soderqvist A, Tidermark J. Internal fixation versus hemiarthroplasty for displaced fractures of the femoral neck in elderly patients with severe cognitive impairment. J Bone Joint Surg British vol. 2005;87(4):523–9. https://doi.org/10.1302/0301-620X.87B4.15764.

    Article  CAS  Google Scholar 

  72. • Reindl R, Harvey EJ, Berry GK, Rahme E. Canadian Orthopaedic trauma S. Intramedullary versus extramedullary fixation for unstable intertrochanteric fractures: a prospective randomized controlled trial. J Bone Joint Surg Am. 2015;97(23):1905–12. https://doi.org/10.2106/JBJS.N.01007. A prospective randomized control trial identyfying the intramedullary nail compared with sliding hip screw to be associated with less radiographic femoral neck shortening following fixation of AO 31-A2 intertrochanteric hip fractures. Yet, this finding was not coorelated with any significant difference in functional outcomes.

    Article  PubMed  Google Scholar 

  73. Saudan M, Lubbeke A, Sadowski C, Riand N, Stern R, Hoffmeyer P. Pertrochanteric fractures: is there an advantage to an intramedullary nail?: a randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J Orthop Trauma. 2002;16(6):386–93.

    Article  PubMed  Google Scholar 

  74. • Swart E, Makhni EC, Macaulay W, Rosenwasser MP, Bozic KJ. Cost-effectiveness analysis of fixation options for intertrochanteric hip fractures. J Bone Joint Surg Am. 2014;96(19):1612–20. https://doi.org/10.2106/JBJS.M.00603. An expected-value decision-analysis model utilizing implant cost and fixation failure rates to compare the sliding hip screw (SHS) to intramedullary nail (IMN) for fixation of intertrochanteric fractures. Concluded that AO 31-A1 and A2 are most cost-effectively treated with SHS, whereas reverse obliquity fractures (A3) are more effectively treated with an IMN.

    Article  PubMed  Google Scholar 

  75. Aros B, Tosteson AN, Gottlieb DJ, Koval KJ. Is a sliding hip screw or im nail the preferred implant for intertrochanteric fracture fixation? Clin Orthop Relat Res. 2008;466(11):2827–32. https://doi.org/10.1007/s11999-008-0285-5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Parker MJ, Bowers TR, Pryor GA. Sliding hip screw versus the Targon PF nail in the treatment of trochanteric fractures of the hip: a randomised trial of 600 fractures. J Bone Joint Surg Br Vol. 2012;94(3):391–7. https://doi.org/10.1302/0301-620X.94B3.28406.

    Article  CAS  Google Scholar 

  77. Aktselis I, Kokoroghiannis C, Fragkomichalos E, Koundis G, Deligeorgis A, Daskalakis E, et al. Prospective randomised controlled trial of an intramedullary nail versus a sliding hip screw for intertrochanteric fractures of the femur. Int Orthop. 2014;38(1):155–61. https://doi.org/10.1007/s00264-013-2196-7.

    Article  PubMed  Google Scholar 

  78. Matre K, Vinje T, Havelin LI, Gjertsen JE, Furnes O, Espehaug B, et al. TRIGEN INTERTAN intramedullary nail versus sliding hip screw: a prospective, randomized multicenter study on pain, function, and complications in 684 patients with an intertrochanteric or subtrochanteric fracture and one year of follow-up. J Bone Joint Surg Am. 2013;95(3):200–8. https://doi.org/10.2106/JBJS.K.01497.

    Article  PubMed  Google Scholar 

  79. Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2010;9:CD000093. https://doi.org/10.1002/14651858.CD000093.pub5.

    Article  Google Scholar 

  80. Bienkowski P, Reindl R, Berry GK, Iakoub E, Harvey EJ. A new intramedullary nail device for the treatment of intertrochanteric hip fractures: perioperative experience. J Trauma. 2006;61(6):1458–62. https://doi.org/10.1097/01.ta.0000200937.12453.fb.

    Article  PubMed  Google Scholar 

  81. Niu E, Yang A, Harris AH, Bishop J. Which fixation device is preferred for surgical treatment of intertrochanteric hip fractures in the United States? A survey of Orthopaedic surgeons. Clin Orthop Relat Res. 2015;473(11):3647–55. https://doi.org/10.1007/s11999-015-4469-5.

    Article  PubMed  PubMed Central  Google Scholar 

  82. DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine. 2006;31(19 Suppl):S144–51. https://doi.org/10.1097/01.brs.0000236893.65878.39.

    Article  PubMed  Google Scholar 

  83. Yagi M, King AB, Boachie-Adjei O. Characterization of osteopenia/osteoporosis in adult scoliosis: does bone density affect surgical outcome? Spine. 2011;36(20):1652–7. https://doi.org/10.1097/BRS.0b013e31820110b4.

    Article  PubMed  Google Scholar 

  84. Okuda S, Oda T, Miyauchi A, Haku T, Yamamoto T, Iwasaki M. Surgical outcomes of posterior lumbar interbody fusion in elderly patients. J Bone Joint Surg Am. 2006;88(12):2714–20. https://doi.org/10.2106/JBJS.F.00186.

    Article  PubMed  Google Scholar 

  85. Hirsch BP, Unnanuntana A, Cunningham ME, Lane JM. The effect of therapies for osteoporosis on spine fusion: a systematic review. Spine J: Off J North Am Spine Soc. 2013;13(2):190–9. https://doi.org/10.1016/j.spinee.2012.03.035.

    Article  Google Scholar 

  86. Schneider JP. Bisphosphonates and low-impact femoral fractures: current evidence on alendronate-fracture risk. Geriatrics. 2009;64(1):18–23.

    PubMed  Google Scholar 

  87. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, et al. Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine. 2012;37(23):E1464–8. https://doi.org/10.1097/BRS.0b013e31826ca2a8.

    Article  PubMed  Google Scholar 

  88. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, et al. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine. 2013;38(8):E487–92. https://doi.org/10.1097/BRS.0b013e31828826dd.

    Article  PubMed  Google Scholar 

  89. Lehman RA Jr, Kang DG, Wagner SC. Management of osteoporosis in spine surgery. J Am Acad Orthop Surg. 2015;23(4):253–63. https://doi.org/10.5435/JAAOS-D-14-00042.

    Article  PubMed  Google Scholar 

  90. Anderson PA, Froyshteter AB, Tontz WL Jr. Meta-analysis of vertebral augmentation compared with conservative treatment for osteoporotic spinal fractures. J Bone Miner Res. 2013;28(2):372–82. https://doi.org/10.1002/jbmr.1762.

    Article  PubMed  Google Scholar 

  91. Mattie R, Laimi K, Yu S, Saltychev M. Comparing percutaneous Vertebroplasty and conservative therapy for treating osteoporotic compression fractures in the thoracic and lumbar spine: a systematic review and meta-analysis. J Bone Joint Surg Am. 2016;98(12):1041–51. https://doi.org/10.2106/JBJS.15.00425.

    Article  PubMed  Google Scholar 

  92. Savage JW, Schroeder GD, Anderson PA. Vertebroplasty and kyphoplasty for the treatment of osteoporotic vertebral compression fractures. J Am Acad Orthop Surg. 2014;22(10):653–64. https://doi.org/10.5435/JAAOS-22-10-653.

    Article  PubMed  Google Scholar 

  93. Goldstein CL, Brodke DS, Choma TJ. Surgical Management of Spinal Conditions in the elderly osteoporotic spine. Neurosurgery. 2015;77(Suppl 4):S98–107. https://doi.org/10.1227/NEU.0000000000000948.

    Article  PubMed  Google Scholar 

  94. Hostin R, McCarthy I, O'Brien M, Bess S, Line B, Boachie-Adjei O, et al. Incidence, mode, and location of acute proximal junctional failures after surgical treatment of adult spinal deformity. Spine. 2013;38(12):1008–15. https://doi.org/10.1097/BRS.0b013e318271319c.

    Article  PubMed  Google Scholar 

  95. Dodwad SM, Khan SN. Surgical stabilization of the spine in the osteoporotic patient. Orthop Clin North Am. 2013;44(2):243–9. https://doi.org/10.1016/j.ocl.2013.01.008.

    Article  PubMed  Google Scholar 

  96. Helgeson MD, Kang DG, Lehman RA Jr, Dmitriev AE, Luhmann SJ. Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection. Spine J: Off J North Am Spine Soc. 2013;13(8):957–65. https://doi.org/10.1016/j.spinee.2013.03.012.

    Article  Google Scholar 

  97. Paik H, Dmitriev AE, Lehman RA Jr, Gaume RE, Ambati DV, Kang DG, et al. The biomechanical effect of pedicle screw hubbing on pullout resistance in the thoracic spine. Spine J: Off J North Am Spine Soc. 2012;12(5):417–24. https://doi.org/10.1016/j.spinee.2012.03.020.

    Article  Google Scholar 

  98. Wu ZX, Gong FT, Liu L, Ma ZS, Zhang Y, Zhao X, et al. A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg. 2012;132(4):471–6. https://doi.org/10.1007/s00402-011-1439-6.

    Article  PubMed  Google Scholar 

  99. Cooper C, Atkinson EJ, Jacobsen SJ, O'Fallon WM, Melton LJ 3rd. Population-based study of survival after osteoporotic fractures. Am J Epidemiol. 1993;137(9):1001–5.

    Article  CAS  PubMed  Google Scholar 

  100. Leibson CL, Tosteson AN, Gabriel SE, Ransom JE, Melton LJ. Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc. 2002;50(10):1644–50.

    Article  PubMed  Google Scholar 

  101. Magaziner J, Lydick E, Hawkes W, Fox KM, Zimmerman SI, Epstein RS, et al. Excess mortality attributable to hip fracture in white women aged 70 years and older. Am J Public Health. 1997;87(10):1630–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. • Black DM, Arden NK, Palermo L, Pearson J, Cummings SR. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of osteoporotic fractures research group. J Bone Miner Res. 1999;14(5):821–8. https://doi.org/10.1359/jbmr.1999.14.5.821. Meta-analysis that supports the continued use of calcium in addition to vitamin D as supplements in osteoporosis management.

    Article  CAS  PubMed  Google Scholar 

  103. Bai H, Jing D, Guo A, Yin S. Randomized controlled trial of zoledronic acid for treatment of osteoporosis in women. J Int Med Res. 2013;41(3):697–704. https://doi.org/10.1177/0300060513480917.

    Article  CAS  PubMed  Google Scholar 

  104. Byun JH, Jang S, Lee S, Park S, Yoon HK, Yoon BH, et al. The efficacy of bisphosphonates for prevention of osteoporotic fracture: an update meta-analysis. J Bone Metab. 2017;24(1):37–49. https://doi.org/10.11005/jbm.2017.24.1.37.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chao M, Hua Q, Yingfeng Z, Guang W, Shufeng S, Yuzhen D, et al. Study on the role of zoledronic acid in treatment of postmenopausal osteoporosis women. Pak J Med Sci. 2013;29(6):1381–4.

    PubMed  PubMed Central  Google Scholar 

  106. van de Glind EM, Willems HC, Eslami S, Abu-Hanna A, Lems WF, Hooft L, et al. Estimating the time to benefit for preventive drugs with the statistical process control method: an example with alendronate. Drugs Aging. 2016;33(5):347–53. https://doi.org/10.1007/s40266-016-0344-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Cesareo R, Iozzino M, D'Onofrio L, Terrinoni I, Maddaloni E, Casini A, et al. Effectiveness and safety of calcium and vitamin D treatment for postmenopausal osteoporosis. Minerva Endocrinol. 2015;40(3):231–7.

    CAS  PubMed  Google Scholar 

  108. Harvey NC, Biver E, Kaufman JM, Bauer J, Branco J, Brandi ML, et al. The role of calcium supplementation in healthy musculoskeletal ageing : an expert consensus meeting of the European Society for Clinical and Economic Aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) and the International Foundation for Osteoporosis (IOF). Osteoporos Int. 2017;28(2):447–62. https://doi.org/10.1007/s00198-016-3773-6.

    Article  CAS  PubMed  Google Scholar 

  109. Reid IR. Should we prescribe calcium supplements for osteoporosis prevention? J Bone Metab. 2014;21(1):21–8. https://doi.org/10.11005/jbm.2014.21.1.21.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int. 2016;27(1):367–76. https://doi.org/10.1007/s00198-015-3386-5.

    Article  CAS  PubMed  Google Scholar 

  111. Kopecky SL, Bauer DC, Gulati M, Nieves JW, Singer AJ, Toth PP, et al. Lack of evidence linking calcium with or without vitamin D supplementation to cardiovascular disease in generally healthy adults: a clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology. Ann Intern Med. 2016;165(12):867–8. https://doi.org/10.7326/M16-1743.

    Article  PubMed  Google Scholar 

  112. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81. https://doi.org/10.1056/NEJMra070553.

    Article  CAS  PubMed  Google Scholar 

  113. Sozen T, Ozisik L, Basaran NC. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56. https://doi.org/10.5152/eurjrheum.2016.048.

    Article  PubMed  Google Scholar 

  114. McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med. 2013;126(1):13–20. https://doi.org/10.1016/j.amjmed.2012.06.023.

    Article  CAS  PubMed  Google Scholar 

  115. Tandon VR, Sharma S, Mahajan A. Bisphosphonate drug holidays: can we recommend currently? J Mid-life Health. 2014;5(3):111–4. https://doi.org/10.4103/0976-7800.141186.

    Article  Google Scholar 

  116. Abrahamsen B, Eiken P, Prieto-Alhambra D, Eastell R. Risk of hip, subtrochanteric, and femoral shaft fractures among mid and long term users of alendronate: nationwide cohort and nested case-control study. BMJ. 2016;353:i3365. https://doi.org/10.1136/bmj.i3365.

    Article  PubMed  PubMed Central  Google Scholar 

  117. • Wang Z, Bhattacharyya T. Trends in incidence of subtrochanteric fragility fractures and bisphosphonate use among the US elderly, 1996-2007. J Bone Miner Res. 2011;26(3):553–60. https://doi.org/10.1002/jbmr.233. Identifies abaloparatide as an alternative anabolic agent to teraparatide effective in preventing fragility fractures with an improved side effect profile.

    Article  CAS  PubMed  Google Scholar 

  118. Balach T, Baldwin PC, Intravia J. Atypical femur fractures associated with diphosphonate use. J Am Acad Orthop Surg. 2015;23(9):550–7. https://doi.org/10.5435/JAAOS-D-14-00024.

    Article  PubMed  Google Scholar 

  119. Edwards BJ, Bunta AD, Lane J, Odvina C, Rao DS, Raisch DW, et al. Bisphosphonates and nonhealing femoral fractures: analysis of the FDA adverse event reporting system (FAERS) and international safety efforts: a systematic review from the research on adverse drug events and reports (RADAR) project. J Bone Joint Surg Am. 2013;95(4):297–307. https://doi.org/10.2106/JBJS.K.01181.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Eriksen EF, Keaveny TM, Gallagher ER, Krege JH. Literature review: the effects of teriparatide therapy at the hip in patients with osteoporosis. Bone. 2014;67:246–56. https://doi.org/10.1016/j.bone.2014.07.014.

    Article  CAS  PubMed  Google Scholar 

  121. Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, et al. Effect of Abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722–33. https://doi.org/10.1001/jama.2016.11136.

    Article  CAS  PubMed  Google Scholar 

  122. Cipriano CA, Issack PS, Shindle L, Werner CM, Helfet DL, Lane JM. Recent advances toward the clinical application of PTH (1-34) in fracture healing. HSS Journal : the musculoskeletal journal of Hospital for Special Surgery. 2009;5(2):149–53. https://doi.org/10.1007/s11420-009-9109-8.

    Article  PubMed  Google Scholar 

  123. Kim SM, Kang KC, Kim JW, Lim SJ, Hahn MH. Current role and application of Teriparatide in fracture healing of osteoporotic patients: a systematic review. J Bone Metab. 2017;24(1):65–73. https://doi.org/10.11005/jbm.2017.24.1.65.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Schweser KM, Crist BD. Osteoporosis: a discussion on the past 5 years. Curr Rev Musculoskelet Med. 2017;10:265–74. https://doi.org/10.1007/s12178-017-9410-y.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Miller PD, Pannacciulli N, Brown JP, Czerwinski E, Nedergaard BS, Bolognese MA, et al. Denosumab or Zoledronic acid in postmenopausal women with osteoporosis previously treated with oral bisphosphonates. J Clin Endocrinol Metab. 2016;101(8):3163–70. https://doi.org/10.1210/jc.2016-1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. • Tsai JN, Uihlein AV, Burnett-Bowie SM, Neer RM, Derrico NP, Lee H, et al. Effects of two years of Teriparatide, Denosumab, or both on bone microarchitecture and strength (DATA-HRpQCT study). J Clin Endocrinol Metab. 2016;101(5):2023–30. https://doi.org/10.1210/jc.2016-1160. Outlines the results and implications of the quality improvement cohort study implemented by the American Orthopaedic Association’s secondary fracture prevention program. Study reports the growth of the Own the Bone intitiative and success of improving fragility fracture management.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bone HG, Chapurlat R, Brandi ML, Brown JP, Czerwinski E, Krieg MA, et al. The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab. 2013;98(11):4483–92. https://doi.org/10.1210/jc.2013-1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Farooki A, Fornier M, Boland P. Atypical femur fractures associated with use of bisphosphonates and denosumab. Ann Oncol. 2015;26(4):819–20. https://doi.org/10.1093/annonc/mdv014.

    Article  CAS  PubMed  Google Scholar 

  129. Zhou Z, Chen C, Zhang J, Ji X, Liu L, Zhang G, et al. Safety of denosumab in postmenopausal women with osteoporosis or low bone mineral density: a meta-analysis. Int J Clin Exp Pathol. 2014;7(5):2113–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Rosenwasser MP, Cuellar D. Medical management of osteoporosis and the surgeons' role. Injury. 2016;47(Suppl 1):S62–4. https://doi.org/10.1016/S0020-1383(16)30014-6.

    Article  PubMed  Google Scholar 

  131. Sorbi R, Aghamirsalim M. Osteoporotic fracture program management: who should be in charge? A comparative survey of knowledge in orthopaedic surgeons and internists. Orthop Traumatol Surg Res: OTSR. 2013;99(6):723–30. https://doi.org/10.1016/j.otsr.2013.03.022.

    Article  CAS  PubMed  Google Scholar 

  132. Ganda K, Puech M, Chen JS, Speerin R, Bleasel J, Center JR, et al. Models of care for the secondary prevention of osteoporotic fractures: a systematic review and meta-analysis. Osteoporos Int. 2013;24(2):393–406. https://doi.org/10.1007/s00198-012-2090-y.

    Article  CAS  PubMed  Google Scholar 

  133. McLellan AR, Gallacher SJ, Fraser M, McQuillian C. The fracture liaison service: success of a program for the evaluation and management of patients with osteoporotic fracture. Osteoporos Int. 2003;14(12):1028–34. https://doi.org/10.1007/s00198-003-1507-z.

    Article  PubMed  Google Scholar 

  134. Bunta AD, Edwards BJ, Macaulay WB Jr, Jeray KJ, Tosi LL, Jones CB, et al. Own the bone, a system-based intervention, improves osteoporosis care after fragility fractures. J Bone Joint Surg Am. 2016;98(24):e109. https://doi.org/10.2106/JBJS.15.01494.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Benzvi L, Gershon A, Lavi I, Wollstein R. Secondary prevention of osteoporosis following fragility fractures of the distal radius in a large health maintenance organization. Arch Osteoporos. 2016;11:20. https://doi.org/10.1007/s11657-016-0275-2.

    Article  PubMed  Google Scholar 

  136. Viprey M, Caillet P, Canat G, Jaglal S, Haesebaert J, Chapurlat R, et al. Low osteoporosis treatment initiation rate in women after distal forearm or proximal Humerus fracture: a healthcare database nested cohort study. PLoS One. 2015;10(12):e0143842. https://doi.org/10.1371/journal.pone.0143842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna N. Miller.

Ethics declarations

Conflict of Interest

Anna Miller reports teaching educational courses for AO North America and sitting on an expert panel for Radius Health. Adam Khan and Richard Rames declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Orthopedic Management of Fractures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.Z., Rames, R.D. & Miller, A.N. Clinical Management of Osteoporotic Fractures. Curr Osteoporos Rep 16, 299–311 (2018). https://doi.org/10.1007/s11914-018-0443-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0443-y

Keywords

Navigation