Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Efficiency at Maximum Power of Dissipative Thermoelectric Generators: A Finite-time Thermodynamic Analysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper we analyze the thermodynamic efficiency expected for a fully dissipative thermoelectric generator (TEG) operating under stationary conditions at a finite rate. Although a finite-time thermodynamic analysis of TEGs has been aimed at since long time, no complete theory is available yet. The state of the art of theory is reviewed, and a simple expression for the maximum achievable efficiency of TEGs operating under fully irreversible conditions is obtained. This also sets a reference efficiency for forthcoming studies of nonstationary operation of TEGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Zabrocki, C. Goupil, H. Ouerdane, Y. Apertet, W. Seifert, and E. Müller, Continuum Theory of TE Elements, Continuum Theory and Modeling of Thermoelectric Elements, C. Goupil and A. cura di, Ed., Wiley, Weinheim, 2016, p 75–156

    Google Scholar 

  2. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Ltd., London, 1957

    Google Scholar 

  3. F.L. Curzon and B. Ahlborn, Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys., 1975, 43, p 22–24

    Article  Google Scholar 

  4. J. Yvon, La pile de Saclay. Experience acquisé en deux ans sur le transfert de chaleur par gaz comprimé, in Proceedings of International Conference on Peaceful Uses of Atomic Energy, Geneva,: United Nations, 1955, p. 387.

  5. I.I. Novikov, The Efficiency of Atomic Power Stations (a Review), J. Nucl. Energy, 1958, 1954(7), p 125–128

    Google Scholar 

  6. B.H. Lavenda, A New Perspective on Thermodynamics, Springer, New York, 2009

    Google Scholar 

  7. C. Van den Broeck, Thermodynamic Efficiency at Maximum Power, Phys. Rev. Lett., 2005, 95(19), p 190602

    Article  Google Scholar 

  8. Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, Efficiency at Maximum Power of Thermally Coupled Heat Engines, Phys. Rev. E, 2012, 85(4), p 041144

    Article  CAS  Google Scholar 

  9. J.M. Gordon, Generalized Power Versus Efficiency Characteristics of Heat Engines: The Thermoelectric Generator as an Instructive Illustration, Am. J. Phys., 1991, 59, p 551–555

    Article  Google Scholar 

  10. Z. Yan and J. Chen, Comment on “Generalized Power Versus Efficiency Characteristics of Heat Engines: The Thermoelectric Generator as an Instructive Illustration,” by J. M. Gordon [Am. J. Phys. 59, 551–555 (1991)], Am. J. Phys., 1993, 61, p 380

    Article  Google Scholar 

  11. J.M. Gordon, A Response to Yan and Chen’s “Comment on ‘Generalized Power Versus Efficiency Characteristics of Heat Engines: The Thermoelectric Generator as an Instructive Illustration’”, Am. J. Phys., 1993, 61, p 381

    Article  Google Scholar 

  12. T. Schmiedl and U. Seifert, Efficiency at Maximum Power: An Analytically Solvable Model for Stochastic Heat Engines, EPL (Europhys. Lett.), 2008, 81, p 20003

    Article  Google Scholar 

  13. Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, From Local Force-Flux Relationships to Internal Dissipations and Their Impact on Heat Engine Performance: The Illustrative Case of a Thermoelectric Generator, Phys. Rev. E, 2013, 88, p 022137

    Article  CAS  Google Scholar 

  14. Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, Irreversibilities and Efficiency at Maximum Power of Heat Engines: The Illustrative Case of a Thermoelectric Generator, Phys. Rev. E, 2012, 85, p 031116

    Article  CAS  Google Scholar 

  15. Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, True Nature of the Curzon-Ahlborn Efficiency, Phys. Rev. E, 2017, 96, p 022119

    Article  CAS  Google Scholar 

  16. C. Wu and R.L. Kiang, Finite-Time Thermodynamic Analysis of a Carnot Engine with Internal Irreversibility, Energy, 1992, 17, p 1173–1178

    Article  CAS  Google Scholar 

  17. B. Gaveau, M. Moreau, and L.S. Schulman, Stochastic Thermodynamics and Sustainable Efficiency in Work Production, Phys. Rev. Lett., 2010, 105(6), p 060601

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Narducci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narducci, D. Efficiency at Maximum Power of Dissipative Thermoelectric Generators: A Finite-time Thermodynamic Analysis. J. of Materi Eng and Perform 27, 6274–6278 (2018). https://doi.org/10.1007/s11665-018-3522-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3522-4

Keywords

Navigation