Abstract
We review a number of issues regarding missing data treatments for intervention and prevention researchers. Many of the common missing data practices in prevention research are still, unfortunately, ill-advised (e.g., use of listwise and pairwise deletion, insufficient use of auxiliary variables). Our goal is to promote better practice in the handling of missing data. We review the current state of missing data methodology and recent missing data reporting in prevention research. We describe antiquated, ad hoc missing data treatments and discuss their limitations. We discuss two modern, principled missing data treatments: multiple imputation and full information maximum likelihood, and we offer practical tips on how to best employ these methods in prevention research. The principled missing data treatments that we discuss are couched in terms of how they improve causal and statistical inference in the prevention sciences. Our recommendations are firmly grounded in missing data theory and well-validated statistical principles for handling the missing data issues that are ubiquitous in biosocial and prevention research. We augment our broad survey of missing data analysis with references to more exhaustive resources.
Similar content being viewed by others
References
Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage Publications.
Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52, 200–203. doi:10.1080/01621459.1957.10501379.
Andridge, R. R., & Little, R. J. A. (2010). A review of hot deck imputation for survey non-response. International Statistical Review, 78, 40–64. doi:10.1111/j.1751-5823.2010.00103.x.
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243–277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Bodner, T. E. (2006). Missing data: prevalence and reporting practices. Psychological Reports, 99, 675–680. doi:10.2466/PR0.99.7.675-680.
Carpenter, J. R., & Kenward, M. G. (2013). Multiple imputation and its application. Chichester, West Sussex: Wiley.
Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330–351. doi:10.1037//1082-989X.6.4.330.
Diggle, P., & Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics, 43, 49–94.
Enders, C. K. (2001). The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educational and Psychological Measurement, 61, 713–740. doi:10.1177/00131640121971482.
Enders, C. K. (2010). Applied missing data analysis. New York: Guilford.
Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430–457. doi:10.1207/S15328007SEM0803_5.
Goldstein, H., Carpenter, J., Kenward, M. G., & Levin, K. A. (2009). Multilevel models with multivariate mixed response types. Statistical Modelling., 9, 173–197. doi:10.1177/1471082X0800900301.
Goldstein, H., Carpenter, J., & Browne, W. J. (2014). Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177, 553–564. doi:10.1111/rssa.12022.
Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80–100. doi:10.1207/S15328007SEM1001_4.
Graham, J. (2012). Missing data: analysis and design. New York: Springer.
Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206–213. doi:10.1007/s11121-007-0070-9.
Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. The Annals of Economic and Social Measurement, 5, 475–492.
Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47, 153–161. doi:10.2307/1912352.
Honaker, J., & King, G. (2010). What to do about missing values in time-series cross-section data. American Journal of Political Science, 54, 561–581. doi:10.1111/j.1540-5907.2010.00447.x.
Honaker, J., King, G., & Blackwell, M. (2011). Amelia II: a program for missing data. Journal of Statistical Software, 45, 1–47.
Howard, W., Rhemtulla, M., & Little, T. D. (2015). Using principal components as auxiliary variables in missing data estimation. Multivariate Behavioral Research, 50, 285–299. doi:10.1080/00273171.2014.999267.
Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88, 125–134. doi:10.2307/2290705.
Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112–1121. doi:10.1080/01621459.1995.10476615.
Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. Hoboken, NJ: John Wiley & Sons.
Little, R. J. A., & Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics, 52, 1324–1333. doi:10.2307/2532847.
Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, E. W. G. (2014). On the joys of missing data. Journal of Pediatric Psychology, 39, 151–162. doi:10.1093/jpepsy/jst048.
Little, T. D., Lang, K. M., Wu, W., & Rhemtulla, M. (2016). Missing data. In D. Cicchetti (Ed.), Developmental Psychopathology: Vol. 1. Theory and method (3rd ed., pp. 760–796). New York: Wiley.
Liu, M., Taylor, J. M. G., & Belin, T. R. (2000). Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies. Biometrics, 56, 1157–1163. doi:10.1111/j.0006-341X.2000.01157.x.
Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: a review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525–556. doi:10.3102/00346543074004525.
Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85–96.
Rubin, D. B. (1978). Multiple imputations in sample surveys—a phenomenological Bayesian approach to nonresponse (Proceedings of the Survey Research Methods Section of the American Statistical Association, pp. 30–34).
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.
Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical Association, 91, 473–489. doi:10.2307/2291635.
Savalei, V., & Rhemtulla, M. (2012). On obtaining estimates of the fraction of missing information from full information maximum likelihood. Structural Equation Modeling, 19, 477–494. doi:10.1080/10705511.2012.687669.
Schafer, J. L. (1997). Analysis of incomplete multivariate data. New York: Chapman Hall.
Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics., 11, 437–457. doi:10.1198/106186002760180608.
van Buuren, S. (2011). Multiple imputation of multilevel data. In J. Hox & J. Roberts (Eds.), Handbook of advanced multilevel analysis (pp. 173–196). Milton Park, UK: Routledge.
van Buuren, S. (2012). Flexible imputation of missing data. Boca Raton, FL: CRC Press.
van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: multivariate imputation by chained equations in R. Journal of Statistical Software, 45, 1–67.
van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 1049–1064. doi:10.1080/10629360600810434.
von Hippel, P. T. (2007). Regression with missing Ys: an improved strategy for analyzing multiply imputed data. Sociological Methodology, 37, 83–117. doi:10.1111/j.1467-9531.2007.00180.x.
von Hippel, P. T. (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39, 265–291. doi:10.1111/j.1467-9531.2009.01215.x.
Wilkinson, L., & Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: guidelines and explanations. American Psychologist, 54, 594–604. doi:10.1037//0003-066X.54.8.594.
Wu, W., Jia, F., & Enders, C. K. (2015). A comparison of imputation strategies for ordinal missing data on Likert scale variables. Multivariate Behavioral Research, 50, 484–503. doi:10.1080/00273171.2015.1022644.
Yucel, R. M. (2008). Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions of the Royal Society A, 366, 2389–2403. doi:10.1098/rsta.2008.0038.
Zhao, J. H., & Schafer, J. L. (2013). pan: multiple imputation for multivariate panel or clustered data (Version 0.9) [R Package].
Zhao, E., & Yucel, R. M. (2009). Performance of sequential imputation method in multilevel applications. In the Proceedings of the American Statistical Association Survey Research Methods Section (pp. 2800–2810).
Acknowledgments
The authors wish to acknowledge the diligent assistance of Jacob Curtis, Brooke Bell, Naomi Norwid, Virginia Stokes, and Jacquelyn Wall in preparing the systematic literature review presented in this article.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of Interest
Todd D. Little owns and receives remuneration from Yhat Enterprises (yhatenterprises.com), which runs educational workshops such as Stats Camp (statscamp.org), and processes his royalties and his fees for consulting on statistics and methods with life science researchers.
Ethical Approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed Consent
Informed consent was obtained from all individual participants included in the study.
Funding
This study was supported by grant NSF 1053160 (Wei Wu and Todd D. Little, co-PIs) and by the Institute for Measurement, Methodology, Analysis, and Policy (Todd D. Little, Director) at Texas Tech University.
Rights and permissions
About this article
Cite this article
Lang, K.M., Little, T.D. Principled Missing Data Treatments. Prev Sci 19, 284–294 (2018). https://doi.org/10.1007/s11121-016-0644-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11121-016-0644-5