Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A joint color image encryption and compression scheme based on hyper-chaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For the low security and compression performance of the existing joint image encryption and compression technology, an improvement algorithm for joint image compression and encryption is proposed. The algorithm employs the discrete cosine transformation dictionary to sparsely represent the color image and then combines it with the encryption algorithm based on the hyper-chaotic system to achieve image compression and encryption simultaneously. Through the experimental analysis, the algorithm proposed in this paper has a good performance in security and compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Zhu, H., Zhao, C., Zhang, X.: A novel image encryption–compression scheme using hyper-chaos and Chinese remainder theorem. Signal Process. Image Commun. 28(6), 670–680 (2013)

    Article  Google Scholar 

  2. Al-Maadeed, S., Al-Ali, A., Abdalla, T.: A new chaos-based image-encryption and compression algorithm. J. Electr. Comput. Eng. 2012, 1–11 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Lian, S.G.: Efficient image or video encryption based on spatiotemporal chaos system. Chaos Solitons Fractals 40(5), 2509–2519 (2009)

    Article  MATH  Google Scholar 

  4. Vancea, F., Vancea, C., Borda, M.: Improving an encryption scheme adapted to JPEG stream encoding. In: The 7th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services 1, pp. 201–204 (2005)

  5. Yuen, C.H., Wong, K.W.: A chaos-based joint image compression and encryption scheme using DCT and SHA-1. Appl. Soft Comput. 11(8), 5092–5098 (2011)

    Article  Google Scholar 

  6. Wu, C.P., Kuo, C.C.J.: Design of integrated multimedia compression and encryption systems. IEEE Trans. Multimed. 7(5), 828–839 (2005)

    Article  Google Scholar 

  7. Tong, X.J., Wang, Z., Zhang, M., et al.: A new algorithm of the combination of image compression and encryption technology based on cross chaotic map. Nonlinear Dyn. 72(1–2), 229–241 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chan, K.S., Fekri, F.: A block cipher cryptosystem using wavelet transforms over finite fields. IEEE Trans. Signal Process. 52(10), 2975–2991 (2004)

    Article  MathSciNet  Google Scholar 

  9. Yang, H.Q., Liao, X.F., Wong, K.W.: SPIHT-based joint image compression and encryption. Acta Phys. Sin. 61(4), 29–36 (2012)

    Google Scholar 

  10. Wu, C.P., Kuo, C.C.J.: Design of integrated multimedia compression and encryption systems. IEEE Trans. Multimed. 7(5), 828–839 (2005)

    Article  Google Scholar 

  11. Wen, J., Kim, H., Villasenor, J.: Binary arithmetic coding with key based interval splitting. IEEE Signal Process. Lett. 13(2), 69–72 (2006)

    Article  Google Scholar 

  12. Caili, D., Wanyu, B.: Logistic map controlled secure arithmetic coding and its application in image encryption. J. Chongqing Univ. 35(8), 87–91 (2012)

    Google Scholar 

  13. Zhou, J., Liang, Z., Chen, Y., Au, O.C.: Security analysis of multimedia encryption schemes based on multiple Huffman table. IEEE Signal Process. Lett. 14(3), 20–20 (2007)

    Article  Google Scholar 

  14. Jakimoski, G., Subbalakshmi, K.: Cryptanalysis of some multimedia encryption schemes. IEEE Trans. Multimed. 10(3), 330–338 (2008)

    Article  Google Scholar 

  15. Wu, Y.: Research on joint image compression and encryption method. Master thesis, Nanchang University, pp. 25–67 (2013)

  16. Bowley, J., Rebollo-Neira, L.: Sparsity and something else: an approach to encrypted image folding. IEEE Signal Process. Lett. 18(3), 189–192 (2011)

    Article  Google Scholar 

  17. Rebollo-Neira, L., Bowley, J., Constantinides, A.G., et al.: Self contained encrypted image folding. Phys. A Stat. Mech. Its Appl. 391(23), 5858–5870 (2012)

    Article  Google Scholar 

  18. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurcat. Chaos 8(6), 1259–1284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, X.Y., Teng, L., Qin, X.: A novel colour image encryption algorithm based on chaos. Signal Process. 92, 1101–1108 (2012)

    Article  Google Scholar 

  20. Matthews, R.: On the derivation of a chaotic encryption algorithm. Cryptologia 13(1), 29–42 (1989)

    Article  MathSciNet  Google Scholar 

  21. Liang-Rui, T., Jing, L., Bing, F.: A new four-dimensional hyperchaotic system and its circuit simulation. Acta Phys. Sin. 58(3), 1446–1455 (2009)

    MATH  Google Scholar 

  22. Liu, H., Wang, X., Kadir, A.: Color image encryption using Choquet fuzzy integral and hyper chaotic system. Opt.-Int. J. Light Electron Opt. 124(18), 3527–3533 (2013)

    Article  Google Scholar 

  23. Cang, S., Qi, G., Chen, Z.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59(3), 515–527 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hong-Yan, J., Zeng-Qiang, C., Zhu-Zhi, Y.: Generation and circuit implementation of a large range hyper-chaotic system. Acta Phys. Sin. 58(7), 4469–4476 (2009)

    MathSciNet  Google Scholar 

  25. Norouzi, B., Mirzakuchaki, S.: A fast color image encryption algorithm based on hyper-chaotic systems. Nonlinear Dyn. 78, 995–1015 (2014)

    Article  Google Scholar 

  26. Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S.M., Mosavi, M.R.: A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion. Multimed. Tools Appl. 73(3), 1469–1497 (2014)

    Article  Google Scholar 

  27. Zhang, Y., Xiao, D., Wen, W., Li, M.: Breaking an image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Nonlinear Dyn. 76, 1645–1650 (2014)

    Article  Google Scholar 

  28. Zhu, C.: A novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 285(1), 29–37 (2012)

    Article  Google Scholar 

  29. Li, C., Liu, Y., Xie, T., Chen, M.Z.Q.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73, 2083–2089 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf. Accessed Jan 2015

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. Image Process. IEEE Trans. 13(4), 600–612 (2004)

    Article  Google Scholar 

  32. Özkaynak, F., Özer, A.B., Yavuz, S.: Cryptanalysis of a novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 285(24), 4946–4948 (2012)

  33. Zhang, Y., Wen, W., Su, M., Li, M.: Cryptanalyzing a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Opt.-Int. J. Light Electron Opt. 125(4), 1562–1564 (2014)

    Article  Google Scholar 

  34. Xie, T., Liu, Y.S., Tang, J.: Breaking a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Opt.-Int. J. Light Electron Opt. 125(24), 7166–7169 (2014)

    Article  Google Scholar 

  35. Rhouma, R., Belghith, S.: Cryptanalysis of a new image encryption algorithm based on hyper-chaos. Phys. Lett. A. 372(38), 5973–5978 (2008)

    Article  MATH  Google Scholar 

  36. Jeng, F.G., Huang, W.L., Chen, T.H.: Cryptanalysis and improvement of two hyper-chaos-based image encryption schemes. Signal Process.-Image. 34, 45–51 (2015)

    Article  Google Scholar 

  37. HanPing, H., Liu, L.F., Ding, N.D.: Pseudorandom sequence generator based on the Chen chaotic system. Comput. Phys. Commun. 184, 765–768 (2013)

    Article  MathSciNet  Google Scholar 

  38. Özkaynaka, F., Yavuzb, S.: Security problems for a pseudorandom sequence generator based on the Chen chaotic system. Comput. Phys. Commun. 184, 2178–2181 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (60973162), the Natural Science Foundation of Shandong Province of China (ZR2009 GM037, ZR2014FM026), the Science and Technology of Shandong Province, China (2013GGX10129, 2010GGX10132, 2012GGX10110), the Soft Science of Shandong Province, China (2012RKA10009), the National Cryptology Development Foundation of China (No. MMJJ201301006), Foundation of Science and Technology on Information Assurance Laboratory (No. KJ-14-005), and the Engineering Technology and Research Center of Weihai Information Security.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, XJ., Zhang, M., Wang, Z. et al. A joint color image encryption and compression scheme based on hyper-chaotic system. Nonlinear Dyn 84, 2333–2356 (2016). https://doi.org/10.1007/s11071-016-2648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2648-x

Keywords

Navigation