Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Hydrothermal self-assembly of α-Fe2O3 nanorings@graphene aerogel composites for enhanced Li storage performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) graphene interconnected network coupled with uniformly dispersed α-Fe2O3 nanorings (α-Fe2O3@GA) was designed by a simple hydrothermal self-assembly strategy and was used as anode material for lithium-ion batteries (LIBs). The α-Fe2O3@GA composites delivered a reversible capacity of 1288 mA h g−1 over 100 cycles at 100 mA g−1 and excellent rate performance than those of pure α-Fe2O3, owing to the synergetic effect of hollow α-Fe2O3 nanorings and inherent 3D porous graphene aerogels. In virtue of their superior lithium storage performance, the α-Fe2O3@GA composites will be promising lithium-ion battery anode materials. Moreover, this study provides a versatile route to synthesis other 3D graphene aerogel-based transitional metal oxide materials for commercial applications in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liu D, Cao G (2010) Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy Environ Sci 3:1218–1237

    Article  CAS  Google Scholar 

  2. Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504

    Article  CAS  Google Scholar 

  3. Mei J, Zhang Y, Liao T, Sun Z, Dou SX (2017) Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl Sci Rev 5:389–416

    Article  CAS  Google Scholar 

  4. Liu H, Hu K, Yan D et al (2018) Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv Mater 30:1800295

    Article  CAS  Google Scholar 

  5. Li Z, Ma Z, Wang Y, Chen R, Wu Z, Wang S (2018) LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries. Sci Bull 63:169–175

    Article  CAS  Google Scholar 

  6. Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S (2018) Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv Mater 30:1705850

    Article  CAS  Google Scholar 

  7. Mei J, Liao T, Kou L, Sun Z (2017) Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv Mater 29:1700176

    Article  CAS  Google Scholar 

  8. Zhao Y, Li X, Yan B et al (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175

    Article  CAS  Google Scholar 

  9. Zhang L, Wu HB, Lou XWD (2014) Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv Energy Mater 4:1300958

    Article  CAS  Google Scholar 

  10. Zhang J, Huang T, Liu Z, Yu A (2013) Mesoporous Fe2O3 nanoparticles as high performance anode materials for lithium-ion batteries. Electrochem Commun 29:17–20

    Article  CAS  Google Scholar 

  11. Wei W, Wang Z, Liu Z et al (2013) Metal oxide hollow nanostructures: fabrication and Li storage performance. J Power Sources 238:376–387

    Article  CAS  Google Scholar 

  12. Xiong QQ, Tu JP, Ge X, Wang XL, Gu CD (2015) One-step synthesis of hematite nanospindles from choline chloride/urea deep eutectic solvent with highly powerful storage versus lithium. J Power Sources 274:1–7

    Article  CAS  Google Scholar 

  13. Keppeler M, Shen N, Nageswaran S, Srinivasan M (2016) Synthesis of α-Fe2O3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. J Mater Chem A 4:18223–18239

    Article  CAS  Google Scholar 

  14. Wang X, Zhang M, Liu E et al (2016) Three-dimensional core-shell Fe2O3@carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries. Appl Surf Sci 390:350–356

    Article  CAS  Google Scholar 

  15. Luo D, Lin F, Xiao W, Zhu W (2017) Synthesis and electrochemical performance of α-Fe2O3@carbon aerogel composite as an anode material for Li-ion batteries. Ceram Int 43:2051–2056

    Article  CAS  Google Scholar 

  16. Lv X, Zhu Y, Yang T et al (2016) Liquid–solid–solution assembly of morphology-controllable Fe2O3/graphene nanostructures as high-performance LIB anodes. Ceram Int 42:19006–19011

    Article  CAS  Google Scholar 

  17. Gao L, Gu C, Ren H, Song X, Huang J (2018) Synthesis of tin(IV) oxide@reduced graphene oxide nanocomposites with superior electrochemical behaviors for lithium-ions batteries. Electrochim Acta 290:72–81

    Article  CAS  Google Scholar 

  18. Liu H, Zou Y, Tao L et al (2017) Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 13:1700758

    Article  CAS  Google Scholar 

  19. Lv W, Li Z, Deng Y, Yang Q-H, Kang F (2016) Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater 2:107–138

    Article  Google Scholar 

  20. Dong Y, Wu Z-S, Ren W, Cheng H-M, Bao X (2017) Graphene: a promising 2D material for electrochemical energy storage. Sci Bull 62:724–740

    Article  CAS  Google Scholar 

  21. Zhao Y, Wang LP, Sougrati MT et al (2017) A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv Energy Mater 7:1601424

    Article  CAS  Google Scholar 

  22. Liu H, Tao L, Zhang Y et al (2017) Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl Mater Interfaces 9:36849–36856

    Article  CAS  Google Scholar 

  23. Lan Y, Li X, Li G, Luo Y (2015) Sol–gel method to prepare graphene/Fe2O3 aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate. J Nanopart Res 17:395

    Article  CAS  Google Scholar 

  24. Zhang X, Sui Z, Xu B et al (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21:6494–6497

    Article  CAS  Google Scholar 

  25. Suo Y, Zhao Q-Q, Meng J-K et al (2016) Fabrication and electrochemical properties of 3D Fe3O4@graphene aerogel composites as lithium-ion battery anodes. Mater Lett 174:36–39

    Article  CAS  Google Scholar 

  26. Lin Y-M, Abel PR, Heller A, Mullins CB (2011) α-Fe2O3 nanorods as anode material for lithium ion batteries. J Phys Chem Lett 2:2885–2891

    Article  CAS  Google Scholar 

  27. Wang Z, Luan D, Madhavi S, Li CM, Lou XW (2011) α-Fe2O3 nanotubes with superior lithium storage capability. Chem Commun 47:8061–8063

    Article  CAS  Google Scholar 

  28. Gu C, Song X, Zhang S, Ryu SO, Huang J (2017) Synthesis of hierarchical α-Fe2O3 nanotubes for high-performance lithium-ion batteries. J Alloys Compd 714:6–12

    Article  CAS  Google Scholar 

  29. Zhu J, Ng KY, Deng D (2014) Hollow cocoon-like hematite mesoparticles of nanoparticle aggregates: structural evolution and superior performances in lithium ion batteries. ACS Appl Mater Interfaces 6:2996–3001

    Article  CAS  Google Scholar 

  30. Zhang J-J, Chen Y-L, Sun Y-F, Huang T, Yu A-S (2013) Hierarchical hollow Fe2O3 micro-flowers composed of porous nanosheets as high performance anodes for lithium-ion batteries. RSC Adv 3:20639–20646

    Article  CAS  Google Scholar 

  31. Liu H, Wang G (2014) An investigation of the morphology effect in Fe2O3 anodes for lithium ion batteries. J Mater Chem A 2:9955–9959

    Article  CAS  Google Scholar 

  32. Li L, Li Z, Fu W, Li F, Wang J, Wang W (2015) α-Fe2O3@C nanorings as anode materials for high performance lithium ion batteries. J Alloys Compd 647:105–109

    Article  CAS  Google Scholar 

  33. Sun Y-H, Liu S, Zhou F-C, Nan J-M (2016) Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@carbon anodes for lithium-ion batteries. Appl Surf Sci 390:175–184

    Article  CAS  Google Scholar 

  34. Wang J, Lin L, He D (2018) Self-assembly of Fe2O3 nanotubes on graphene as an anode material for lithium ion batteries. J Alloys Compd 750:871–877

    Article  CAS  Google Scholar 

  35. Zhu X, Zhu Y, Murali S, Stoller M, Ruoff R (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338

    Article  CAS  Google Scholar 

  36. Tung VC, Allen MJ, Yang Y, Kaner RB (2008) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29

    Article  CAS  Google Scholar 

  37. Jia CJ, Sun LD, Luo F et al (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Amer Chem Soc 130:16968–16977

    Article  CAS  Google Scholar 

  38. Xiao L, Wu D, Han S et al (2013) Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl Mater Interfaces 5:3764–3769

    Article  CAS  Google Scholar 

  39. Yang X, Sun H, Zhang L, Zhao L, Lian J, Jiang Q (2016) High efficient photo-fenton catalyst of α-Fe2O3/MoS2 hierarchical nanoheterostructures: reutilization for supercapacitors. Sci Rep 6:31591

    Article  CAS  Google Scholar 

  40. Zheng C, Niu S, Lv W et al (2017) Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy 33:306–312

    Article  CAS  Google Scholar 

  41. Jia X, Lian D, Shi B, Dai R, Li C, Wu X (2017) Facile synthesis of α-Fe2O3@graphene oxide nanocomposites for enhanced gas-sensing performance to ethanol. J Mater Sci: Mater El 28:12070–12079

    CAS  Google Scholar 

  42. Xie S, Zhang M, Liu P et al (2017) Advanced negative electrode of Fe2O3/graphene oxide paper for high energy supercapacitors. Mater Res Bull 96:413–418

    Article  CAS  Google Scholar 

  43. Qi X, Zhang HB, Xu J et al (2017) Highly efficient high-pressure homogenization approach for scalable production of high-quality graphene sheets and sandwich-structured α-Fe2O3/graphene hybrids for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 9:11025–11034

    Article  CAS  Google Scholar 

  44. Li L, Zhou G, Weng Z, Shan X-Y, Li F, Cheng H-M (2014) Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67:500–507

    Article  CAS  Google Scholar 

  45. Zhao Y, Zhai X, Yan D et al (2017) Rational construction the composite of graphene and hierarchical structure assembled by Fe2O3 nanosheets for lithium storage. Electrochim Acta 243:18–25

    Article  CAS  Google Scholar 

  46. Zhao Y, Yan D, Ding C et al (2016) Fe2O3 nanocubes exposed (012) active facets combination with graphene rendering enhanced lithium storage capability. J Power Sources 327:658–665

    Article  CAS  Google Scholar 

  47. Liu L, Yang X, Lv C et al (2016) Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Appl Mater Interfaces 8:7047–7053

    Article  CAS  Google Scholar 

  48. Wang R, Xu C, Du M et al (2014) Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability. Small 10:2260–2269

    Article  CAS  Google Scholar 

  49. Liu S, Sun Y-H, Zhou F-C, Nan J-M (2016) Improved electrochemical performance of α-Fe2O3 nanorods and nanotubes confined in carbon nanoshells. Appl Surf Sci 375:101–109

    Article  CAS  Google Scholar 

  50. Ma J, He YS, Zhang W et al (2015) An experimental insight into the advantages of in situ solvothermal route to construct 3D graphene-based anode materials for lithium-ion batteries. Nano Energy 16:235–246

    Article  CAS  Google Scholar 

  51. Cui X, Zhu Y, Li F et al (2016) Enhanced rate capability of a lithium ion battery anode based on liquid–solid–solution assembly of Fe2O3 on crumpled graphene. RSC Adv 6:9007–9012

    Article  CAS  Google Scholar 

  52. Liu Y, He D, Wu H, Duan J, Zhang Y (2015) Hydrothermal self-assembly of manganese dioxide/manganese carbonate/reduced graphene oxide aerogel for asymmetric supercapacitors. Electrochim Acta 164:154–162

    Article  CAS  Google Scholar 

  53. Meng J-K, Fu L, Liu Y-S et al (2017) Gas-liquid interfacial assembly and electrochemical properties of 3D highly dispersed α-Fe2O3@graphene aerogel composites with a hierarchical structure for applications in anodes of lithium ion batteries. Electrochim Acta 224:40–48

    Article  CAS  Google Scholar 

  54. Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y (2017) Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11:5140–5147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by ShanXi Provincial Natural Science Foundation of China (2015011016) and ShanXi Province major special projects (No. MC2016-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Wei, Y., Jin, X. et al. Hydrothermal self-assembly of α-Fe2O3 nanorings@graphene aerogel composites for enhanced Li storage performance. J Mater Sci 54, 7119–7130 (2019). https://doi.org/10.1007/s10853-019-03371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03371-5

Navigation