Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A plasmon-enhanced broadband absorber fabricated by black silicon with self-assembled gold nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A lithography-free, self-assembly fabrication route exploiting black silicon (B-Si) microstructures to design a perfect absorber based on densely and disordered packed gold nanoparticles (AuNPs)-modified silicon forests have been proposed in this paper. The geometrical dimensions of microstructures were controlled by altering the flow rate of SF6/O2 in the reactive ion etching (RIE) chamber. The RIE B-Si shows a unique geometry that consists of a combination of sharp “needles” at the top and rounded “holes” at the bottom, and also shows an excellent adaptive relationship with Au deposition. By combining the light-trapping capability of the B-Si and the plasmonic nature of AuNPs in the near-infrared (NIR) range, an experimental absorption of 96.5% is achieved in a wide range from 350 to 2500 nm. This material has the potential for photonic applications, including solar energy harvesting or NIR-sensitive optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Liu, P.R. Coxon, M. Peters, B. Hoex, J.M. Cole, D.J. Fray, Black silicon: fabrication methods, properties and solar energy applications. Energy Environ. Sci. 7, 3223–3263 (2014)

    Article  CAS  Google Scholar 

  2. M. Burresi, F. Pratesi, F. Riboli, D.S. Wiersma, Complex photonic structures for light harvesting. Adv. Opt. Mater. 3, 722–743 (2015)

    Article  CAS  Google Scholar 

  3. R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, P. Ranson, Silicon columnar microstructures induced by an SF6/O2plasma. J. Phys. D. 38, 3395–3402 (2005)

    Article  CAS  Google Scholar 

  4. Y. Xia, B. Liu, J. Liu, Z. Shen, C. Li, A novel method to produce black silicon for solar cells. Sol. Energy. 85, 1574–1578 (2011)

    Article  CAS  Google Scholar 

  5. H. Kim, N. Cho, Morphological and nanostructural features of porous silicon prepared by electrochemical etching. Nanoscale Res. Lett. 7, 408 (2012)

    Article  Google Scholar 

  6. Y. Su, S. Li, G. Zhao, Z. Wu, Y. Yang, W. Li, Y. Jiang, Optical properties of black silicon prepared by wet etching. J. Mater. Sci. Mater. Electron. 23, 1558–1561 (2012)

    Article  CAS  Google Scholar 

  7. R. Venkatesan, M.K. Arivalagan, V. Venkatachalapathy, J.M. Pearce, J. Mayandi, Effects of silver catalyst concentration in metal assisted chemical etching of silicon. Mater. Lett. 221, 206–210 (2018)

    Article  CAS  Google Scholar 

  8. T.H. Her, R.J. Finlay, C. Wu, E. Mazur, Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 73, 1673–1675 (1998)

    Article  CAS  Google Scholar 

  9. M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, A. Tünnermann, An ultra-black silicon absorber. Laser Photonics Rev. 8, L13–L17 (2014)

    Article  CAS  Google Scholar 

  10. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  11. H. Tan, R. Santbergen, A.H. Smets, M. Zeman, Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12, 4070–4076 (2012)

    Article  CAS  Google Scholar 

  12. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  CAS  Google Scholar 

  13. M. Yan, J. Dai, M. Qiu, Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J. Opt. 16, 025002 (2014)

    Article  Google Scholar 

  14. X. Liu, J. Gao, H. Yang, Broadband near-infrared absorption enhancement in Si substrate via random distributed Ag nanoparticles. J. Mater. Sci. Mater. Electron. 27, 10479–10483 (2016)

    Article  CAS  Google Scholar 

  15. J. Hao, J. Wang, X. Liu, W.J. Padilla, L. Zhou, M. Qiu, High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010)

    Article  Google Scholar 

  16. W. Ma, Y. Wen, X. Yu, Theoretical and Experimental Demonstrations of a Dual-Band Metamaterial Absorber at Mid-Infrared. IEEE Photonics Technol. Lett. 26, 1940–1943 (2014)

    Article  CAS  Google Scholar 

  17. Q. Li, J. Gao, Z. Li, H. Yang, H. Liu, X. Wang, Y. Li, Absorption enhancement in nanostructured silicon fabricated by self-assembled nanosphere lithography. Opt. Mater. 70, 165–170 (2017)

    Article  CAS  Google Scholar 

  18. G. Hou, Z. Wang, H. Ma, Y. Ji, L. Yu, J. Xu, K. Chen, High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications. Nanoscale. 11, 14777–14784 (2019)

    Article  CAS  Google Scholar 

  19. P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, Z. Chen, Nearinfrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon. Nanoscale Res. Lett. 9, 519 (2014)

    Article  Google Scholar 

  20. Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, Y. Tu, Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection. Nanotechnology. 28, 275202 (2017)

    Article  Google Scholar 

  21. Y. Wang, J. Gao, H. Yang, X. Wang, Near-infrared absorption enhancement in microstructured silicon by Ag film deposition. J. Mater. Sci. Mater. Electron. 27, 9002–9007 (2016)

    Article  CAS  Google Scholar 

  22. T. Ming, A. Schleusener, D. Yermukhamed, B. Dietzek, V. Sivakov, Silver mirror reaction as a simple method for silicon nanowires functionalization. Mater. Res. Express. 6, 105057 (2019)

    Article  CAS  Google Scholar 

  23. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonic. 10, 393–398 (2016)

    Article  CAS  Google Scholar 

  24. L. Zhou, S. Zhuang, C. He, Y. Tan, Z. Wang, J. Zhu, Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 32, 195–200 (2017)

    Article  Google Scholar 

  25. D. Vick, L.J. Friedrich, S.K. Dew, M.J. Brett, K. Robbie, M. Seto, T. Smy, Self-shadowing and surface diffusion effects in obliquely deposited thin films. Thin Solid Films 339, 88–94 (1999)

    Article  CAS  Google Scholar 

  26. M. Steglich, T. Käsebier, Z. Matthias, T. Pertsch, E.-B. Kley, A. Tünnermann, The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching. J. Appl. Phys. 116, 173503 (2014)

    Article  Google Scholar 

  27. D. AbiSaab, P. Basset, M.J. Pierotti, M.L. Trawick, D.E. Angelescu, Static and dynamic aspects of black silicon formation. Phys. Rev. Lett. 113, 265502 (2014)

    Article  Google Scholar 

  28. H.-C. Yuan, V.E. Yost, M.R. Page, P. Stradins, D.L. Meier, H.M. Branz, Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules. Appl. Phys. Lett. 95, 123501 (2009)

    Article  Google Scholar 

  29. D.A. Saab, S. Mostarshedi, P. Basset, S. Protat, D. Angelescu, E. Richalot, Effect of black silicon disordered structures distribution on its wideband reduced reflectance. Mater. Res. Express. 1, 045045 (2014)

    Article  Google Scholar 

  30. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B. 6, 4370 (1972)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61734002, 61435010, 61177035 and 61421002). The author would also like to thank Xiuwei Yang and Anbo Yuan for their help in RIE and SEM analysis, and the State Key Laboratory of Electronic Thin Films and Integrated Devices in China, for their help and equipment support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Liu, T., Liu, S. et al. A plasmon-enhanced broadband absorber fabricated by black silicon with self-assembled gold nanoparticles. J Mater Sci: Mater Electron 31, 4696–4701 (2020). https://doi.org/10.1007/s10854-020-03025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03025-2

Navigation