Abstract
We consider the \(\mathcal{NP}\)-hard problem of finding a spanning tree with a maximum number of internal vertices. This problem is a generalization of the famous Hamiltonian Path problem. Our dynamic-programming algorithms for general and degree-bounded graphs have running times of the form \(\mathcal{O}^{*}(c^{n})\) with c≤2. For graphs with bounded degree, c<2. The main result, however, is a branching algorithm for graphs with maximum degree three. It only needs polynomial space and has a running time of \(\mathcal{O}(1.8612^{n})\) when analyzed with respect to the number of vertices. We also show that its running time is \(2.1364^{k} n^{\mathcal{O}(1)}\) when the goal is to find a spanning tree with at least k internal vertices. Both running time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel use of this kind of analysis for parameterized algorithms.
Similar content being viewed by others
References
Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996)
Bellman, R.: Dynamic programming treatment of the Travelling Salesman Problem. J. Assoc. Comput. Mach. 9, 61–63 (1962)
Binkele-Raible, D.: Amortized analysis of exponential time- and parameterized algorithms: Measure & Conquer and Reference Search Trees. Ph.D. Thesis, Universität Trier, Germany (2010)
Binkele-Raible, D., Brankovic, L., Cygan, M., Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Pilipczuk, M., Rossmanith, P., Wojtaszczyk, J.O.: Breaking the 2n-barrier for Irredundance: two lines of attack. J. Discrete Algorithms 9, 214–230 (2011)
Binkele-Raible, D., Fernau, H.: Enumerate and measure, improving parameter budget management. In: Parameterized and Exact Computation, IPEC. Lecture Notes in Computer Science, vol. 6478, pp. 38–49. Springer, Berlin (2010). Long version accepted to be published in Algorithmica under the title “Parameterized Measure & Conquer for problems with no small kernels.”
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the 39th Annual ACM Symposium on Theory of Computing, STOC, pp. 67–74. ACM, New York (2007)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The Travelling Salesman Problem in bounded degree graphs. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) In: Proceedings of 35th International Colloquium on Automata, Languages and Programming, ICALP, Part I: Tack A: Algorithms, Automata, Complexity, and Games. Lecture Notes in Computer Science, vol. 5125, pp. 198–209. Springer, Berlin (2008)
Björklund, A.: Determinant sums for undirected Hamiltonicity. In: 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 173–182. IEEE Comput. Soc., Los Alamitos (2010)
Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41, 280–301 (2001)
Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010)
Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding k-vertex out-trees and its application to k-internal out-branching problem. J. Comput. Syst. Sci. 76(7), 650–662 (2010)
Eppstein, D.: The Traveling Salesman problem for cubic graphs. J. Graph Algorithms Appl. 11(1), 61–81 (2007)
Fellows, M.R.: Towards fully multivariate algorithmics: some new results and directions in parameter ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) Combinatorial Algorithms, 20th International Workshop, IWOCA. Lecture Notes in Computer Science, vol. 5874, pp. 2–10. Springer, Berlin (2009)
Fernau, H., Gaspers, S., Raible, D.: Exact and parameterized algorithms for max internal spanning tree. In: Paul, C., Habib, M. (eds.) Graph-Theoretic Concepts in Computer Science, 35th International Workshop, WG. Lecture Notes in Computer Science, vol. 5911, pp. 100–111. Springer, Berlin (2010)
Fernau, H., Gaspers, S., Raible, D., Stepanov, A.A.: Exact exponential time algorithms for Max Internal Spanning Tree. arxiv:0811.1875 (2008)
Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact algorithm for the Maximum Leaf Spanning Tree problem. In: Chen, J., Fomin, F.V. (eds.) Proceedings of 4th International Workshop on Parameterized and Exact Computation, IWPEC. Lecture Notes in Computer Science, vol. 5917, pp. 161–172. Springer, Berlin (2009). Long version to appear in Theor. Comput. Sci.
Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the Minimum Feedback Vertex Set problem: exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)
Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for Maximum Internal Spanning Tree. In: Dong, Y., Du, D.-Z., Ibarra, O.H. (eds.) Algorithms and Computation, 20th International Symposium, ISAAC, Lecture Notes in Computer Science, vol. 5878, pp. 267–277. Springer, Berlin (2009)
Fomin, F.V., Grandoni, F., Kratsch, D.: A Measure & Conquer approach for the analysis of exact algorithms. Journal of the Association for Computing Machinery 56(5) (2009)
Fomin, F.V., Grandoni, F., Kratsch, D.: Solving Connected Dominating Set faster than 2n. Algorithmica 52(2), 153–166 (2008)
Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)
Fomin, F.V., Lokshtanov, D., Grandoni, F., Saurabh, S.: Sharp separation and applications to exact and parameterized algorithms. In: López-Ortiz, A. (ed.) Proceedings of LATIN, 9th Latin American Theoretical Informatics Symposium. Lecture Notes in Computer Science, vol. 6034, pp. 72–83. Springer, Berlin (2010)
Gaspers, S.: Exponential time algorithms: structures, measures, and bounds. Ph.D. Thesis, University of Bergen (2008)
Gaspers, S., Saurabh, S., Stepanov, A.A.: A moderately exponential time algorithm for Full Degree Spanning Tree. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) Proceedings of TAMC, Theory and Applications of Models of Computation, 5th International Conference. Lecture Notes in Computer Science, vol. 4978, pp. 479–489. Springer, Berlin (2008)
Gaspers, S., Sorkin, G.B.: A universally fastest algorithm for Max 2-Sat, Max 2-CSP, and everything in between. In Mathieu, C. (ed.) Proceedings of SODA, 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, pp. 606–615 (2009). Long version accepted to be published in J. Comput. Syst. Sci.
Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10, 196–210 (1962)
Iwama, K., Nakashima, T.: An improved exact algorithm for cubic graph TSP. In: Lin, G. (ed.) Proceedings of 13th Annual International Conference, Computing and Combinatorics, COCOON. Lecture Notes in Computer Science, vol. 4598, pp. 108–117. Springer, Berlin (2007)
Karp, R.M.: Dynamic programming meets the principle of inclusion-exclusion. Inf. Process. Lett. 1(2), 49–51 (1982)
Knauer, M., Spoerhase, J.: Better approximation algorithms for the Maximum Internal Spanning Tree Problem. In: Dehne, F.K.H.A., Gavrilova, M.L., Sack, J.-R., Tóth, C.D. (eds.) Proceedings of WADS, Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 5664, pp. 459–470. Springer, Berlin (2009)
Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the Traveling Salesman Problem. In: Proceedings of the 1977 ACM Annual Conference, pp. 294–300. ACM, New York (1977)
Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: Schulman, L.J. (ed.) Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC, pp. 321–330. ACM, New York (2010)
Lokshtanov, D., Saurabh, S.: Even faster algorithm for Set Splitting! In: Chen, J., Fomin, F.V. (eds.) Proceedings of Parameterized and Exact Computation, 4th International Workshop, IWPEC. Lecture Notes in Computer Science, vol. 5917, pp. 288–299. Springer, Berlin (2009)
Mays, L.M.: Water Resources Engineering, 2nd edn. Wiley, New York (2010)
Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3, 23–28 (1965)
Nederlof, J.: Fast polynomial-space algorithms using Möbius inversion: improving on Steiner Tree and related problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) Proceedings of 36th International Colloquium on Automata, Languages and Programming, ICALP, Part I: Tack A: Algorithms, Automata, Complexity, and Games. Lecture Notes in Computer Science, vol. 5555, pp. 713–725. Springer, Berlin (2009)
Nederlof, J., van Rooij, J.M.M.: Inclusion/exclusion branching for Partial Dominating Set and Set Splitting. In: Raman, V., Saurabh, S. (eds.) Parameterized and Exact Computation—5th International Symposium, IPEC. Lecture Notes in Computer Science, vol. 6478, pp. 204–215. Springer, Berlin (2010)
Ozeki, K., Yamashita, T.: Spanning trees: a survey. Graphs Comb. 27, 1–26 (2011)
Prieto, E.: Systematic kernelization in FPT algorithm design. Ph.D. Thesis, The University of Newcastle, Australia (2005)
Prieto, E., Sloper, C.: Either/or: Using vertex cover structure in designing FPT-algorithms—the case of k-internal spanning tree. In: Dehne, F.K.H.A., Sack, J.-R., Smid, M.H.M. (eds.) Proceedings of WADS, Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 2748, pp. 465–483. Springer, Berlin (2003)
Prieto, E., Sloper, C.: Reducing to independent set structure—the case of k-internal spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)
Raible, D., Fernau, H.: An amortized search tree analysis for k-Leaf Spanning Tree. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM: Theory and Practice of Computer Science. Lecture Notes in Computer Science, vol. 5901, pp. 672–684. Springer, Berlin (2010)
Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)
Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Inf. Process. Lett. 105(5), 164–169 (2008)
Salamon, G.: Approximation algorithms for the maximum internal spanning tree problem. Theor. Comput. Sci. 410(50), 5273–5284 (2009)
Salamon, G.: A survey on algorithms for the maximum internal spanning tree and related problems. Electron. Notes Discrete Math. 36, 1209–1216 (2010)
Sunil Chandran, L., Grandoni, F.: Refined memorization for vertex cover. Inf. Process. Lett. 93, 125–131 (2005)
Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and related problems. Ph.D. Thesis, Linköpings Universitet, Sweden (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by a PPP grant between DAAD (Germany) and NFR (Norway). The third author acknowledges partial support from the ERC, grant reference 239962.
A preliminary version of this paper appeared in the proceedings of WG 2009 [14].
Rights and permissions
About this article
Cite this article
Binkele-Raible, D., Fernau, H., Gaspers, S. et al. Exact and Parameterized Algorithms for Max Internal Spanning Tree . Algorithmica 65, 95–128 (2013). https://doi.org/10.1007/s00453-011-9575-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-011-9575-5