Abstract
T cell epitope-driven vaccine design employs bioinformatic algorithms to identify potential targets of vaccines against infectious diseases or cancer. Potential epitopes can be identified with major histocompatibility complex (MHC)-binding algorithms, and the ability to bind to MHC class I or class II indicates a predominantly CD4+ or CD8+ T cell response. Furthermore, an epitope-based vaccine can circumvent evolutionary events favoring immune escape present in native proteins from pathogens. It can also focus on only the most relevant epitopes (i.e. conserved and promiscuous) recognized by the majority of the target population. Mounting evidence points to the critical role of CD4+ T cells in natural antigen encounter and active immunization. In this paper the need for CD4+ T cell help in vaccine development, the selection of CD4+ T cell epitopes for an epitope-based vaccine, and how the approach can be used to induce a protective effect are reviewed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alexander J, Sidney J, Southwood S et al (1994) Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides immunity 1:751–761
Barker CJ, Beagley KW, Hafner LM et al (2008) In silico identification and in vivo analysis of a novel T-cell antigen from Chlamydia, NrdB. Vaccine 26:1285–1296
Bennett SR, Carbone FR, Karamalis F et al (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478–480
Berzofsky JA (1988) Immunodominance in T lymphocyte recognition. Immunol Lett 18:83–92
Berzofsky JA, Cease KB, Cornette JL et al (1987) Protein antigenic structures recognized by T cells: potential applications to vaccine design. Immunol Rev 98:9–52
Bevan MJ (2004) Helping the CD8(+) T-cell response. Nat Rev Immunol 4:595–602
Bian H, Hammer J (2004) Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE. Methods 34:468–475
Bjorkman PJ, Saper MA, Samraoui B et al (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518
Braga-Neto UM, Marques ET Jr (2006) From functional genomics to functional immunomics: new challenges, old problems, big rewards. PLoS Comput Biol 2:e81
Calvo-Calle JM, Strug I, Nastke MD et al (2007) Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection. PLoS Pathog 3:1511–1529
Carson RT, Vignali KM, Woodland DL et al (1997) T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage. Immunity 7:387–399
Cohen WM, Pouvelle-Moratille S, Wang XF et al (2006) Scanning the HIV genome for CD4+ T cell epitopes restricted to HLA-DP4, the most prevalent HLA class II molecule. J Immunol 176:5401–5408
Cunha-Neto E (1999) MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans. Braz J Med Biol Res 32:199–205
Damico FM, Cunha-Neto E, Goldberg AC, Iwai LK, Marin ML, Hammer J, Kalil J, Yamamoto JH (2005) T cell recognition and cytokine profile induced by melanocyte epitopes in HLA-DRB1* 0405-positive and negative Vogt-Koyanagi-Harada uveitis patients. Invest Ophthalmol Vis Sci 46:2465–2471
Davenport MP, Hill AV (1996) Reverse immunogenetics: from HLA-disease associations to vaccine candidates. Mol Med Today 2:38–45
De Groot AS, Jesdale BM, Szu E et al (1997) An interactive web site providing major histocompatibility ligand predictions: application to HIV research. AIDS Res Hum Retrovir 13:529–531
De Groot AS, Bosma A, Chinai N et al (2001) From genome to vaccine: in silico predictions, ex vivo verification. Vaccine 19:4385–4395
De Groot AS, McMurry J, Moise L (2008) Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 8:620–626
de Lalla C, Sturniolo T, Abbruzzese L et al (1999) Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction. J Immunol 163:1725–1729
Depil S, Moralès O, Castelli FA et al (2007) Determination of a HLA II promiscuous peptide cocktail as potential vaccine against EBV latency II malignancies. J Immunother 30:215–226
Doolan DL, Southwood S, Chesnut R et al (2000) HLA-DR-promiscuous T cell epitopes from plasmodium falciparum pre-erythrocytic-stage antigens restricted by multiple HLA class II alleles. J Immunol 165:1123–1137
Flynn JC, McCormick DJ, Brusic V et al (2004) Pathogenic human thyroglobulin peptides in HLA-DR3 transgenic mouse model of autoimmune thyroiditis. Cell Immunol 229:79–85
Fonseca CT, Cunha-Neto E, Goldberg AC et al (2005a) Human T cell epitope mapping of the Schistosoma mansoni 14 kDa fatty acid-binding protein using cells from patients living in areas endemic for schistosomiasis. Microbes Infect 7:204–212
Fonseca CT, Cunha-Neto E, Goldberg AC et al (2005b) Identification of paramyosin T cell epitopes associated with human resistance to Schistosoma mansoni infection. Clin Exp Immunol 142:539–547
Fonseca SG, Coutinho-Silva A, Fonseca LA et al (2006) Identification of novel consensus CD4 T-cell epitopes from clade B HIV-1 whole genome that are frequently recognized by HIV-1 infected patients. AIDS 20:2263–2273
Franco A, Ferrari C, Sette A et al (1995) Viral mutations, TCR antagonism and escape from the immune response. Curr Opin Immunol 7:524–531
Fu TM, Friedman A, Ulmer JB et al (1997) Protective cellular immunity: cytotoxic T-lymphocyte responses against dominant and recessive epitopes of influenza virus nucleoprotein induced by DNA immunization. J Virol 71:2715–2721
Gandhi RT, Walker BD (2002) Immunologic control of HIV-1. Annu Rev Med 53:149–172
Garcia TC, Fonseca CT, Pacifico LG et al (2008) Peptides containing T cell epitopes, derived from Sm14, but not from paramyosin, induce a Th1 type of immune response, reduction in liver pathology and partial protection against Schistosoma mansoni infection in mice. Acta Trop 106:162–167
Gowthaman U, Agrewala JN (2008) In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. J Proteome Res 7:154–163
Guan P, Doytchinova IA, Zygouri C et al (2003) MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Appl Bioinformatics 2:63–66
Guo Y, Niiya H, Azuma T et al (2005) Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood 106:1415–1418
Hammer J, Bono E, Gallazzi F et al (1994) Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J Exp Med 180:2353–2358
Honeyman MC, Brusic V, Harrison LC (1997) Strategies for identifying and predicting islet autoantigen T-cell epitopes in insulin-dependent diabetes mellitus. Ann Med 29:401–404
Hural JA, Friedman RS, McNabb A et al (2002) Identification of naturally processed CD4 T cell epitopes from the prostate-specific antigen kallikrein 4 using peptide based in vitro stimulation. J Immunol 169:557–565
Inaba H, Martin W, De Groot AS et al (2006) Thyrotropin receptor epitopes and their relation to histocompatibility leukocyte antigen-DR molecules in Graves’ disease. J Clin Endocrinol Metab 91:2286–2294
Iwai LK, Yoshida M, Sidney J et al (2003) In silico prediction of peptides binding to multiple HLA-DR molecules accurately identifies immunodominant epitopes from gp43 of Paracoccidioides brasiliensis frequently recognized in primary peripheral blood mononuclear cell responses from sensitized individuals. Mol Med 9:209–219
Iwai LK, Yoshida M, Sadahiro A et al (2007) T-cell recognition of Paracoccidioides brasiliensis gp43-derived peptides in patients with paracoccidioidomycosis and healthy individuals. Clin Vaccine Immunol 14:474–476
Khan AM, Miotto O, Heiny AT et al (2006) A systematic bioinformatics approach for selection of epitope-based vaccine targets. Cell Immunol 244:141–147
Khanolkar A, Fuller MJ, Zajac AJ (2004) CD4 T cell-dependent CD8 T cell maturation. J Immunol 172:2834–2844
Khanolkar A, Badovinac VP, Harty JT (2007) CD8 T cell memory development: CD4 T cell help is appreciated. Immunol Res 39:94–104
Kim D, Hoory T, Monie A et al (2008) Enhancement of DNA vaccine potency through coadministration of CIITA DNA with DNA vaccines via gene gun. J Immunol 180:7019–7027
Kobayashi H, Song Y, Hoon DS et al (2001) Tumor-reactive T helper lymphocytes recognize a promiscuous MAGE-A3 epitope presented by various major histocompatibility complex class II alleles. Cancer Res 61:4773–4778
Kobayashi H, Omiya R, Ruiz M et al (2002) Identification of an antigenic epitope for helper T lymphocytes from carcinoembryonic antigen. Clin Cancer Res 8:3219–3225
Koren E, De Groot AS, Jawa V et al (2007) Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin Immunol 124:26–32
Lanzavecchia A, Sallusto F (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2:487–492
Letvin NL, Mascola JR, Sun Y et al (2006) Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science 312:1530–1533
Li H, Xu CF, Blais S et al (2009) Proximal glycans outside of the epitopes regulate the presentation of HIV-1 envelope gp120 helper epitopes. J Immunol 182:6369–6378
Lin HH, Zhang GL, Tongchusak S et al (2008) Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 9(suppl 12):S22
Livingstone AM, Wilson EB, Ontiveros F, Wang JC (2009) Unravelling the mechanisms of help for CD8+ T cell responses. Immunol Res 45(2–3):209–217
Mallone R, Nepom GT (2004) MHC Class II tetramers and the pursuit of antigen-specific T cells: define, deviate, delete. Clin Immunol 110:232–242
McNeel DG, Nguyen LD, Disis ML (2001) Identification of T helper epitopes from prostatic acid phosphatase. Cancer Res 61:5161–5167
Mitra-Kaushik S, Cruz J, Stern LJ et al (2007) Human cytotoxic CD4+ T cells recognize HLA-DR1-restricted epitopes on vaccinia virus proteins A24R and D1R conserved among poxviruses. J Immunol 179:1303–1312
Moise L, De Groot AS (2006) Putting immunoinformatics to the test. Nat Biotechnol 24:791–792
Moudgil KD, Deng H, Nanda NK et al (1996) Antigen processing and T cell repertoires as crucial aleatory features in induction of autoimmunity. J Autoimmun 9:223–227
Mustafa AS (2009) Th1 cell reactivity and HLA-DR binding prediction for promiscuous recognition of MPT63 (Rv1926c), a major secreted protein of Mycobacterium tuberculosis. Scand J Immunol 69:213–222
Nielsen M, Lundegaard C, Blicher T et al (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4:e1000107
Novy P, Quigley M, Huang X et al (2007) CD4 T cells are required for CD8 T cell survival during both primary and memory recall responses. J Immunol 179:8243–8251
Ohkuri T, Wakita D, Chamoto K et al (2009) Identification of novel helper epitopes of MAGE-A4 tumour antigen: useful tool for the propagation of Th1 cells. Br J Cancer 100:1135–1143
Panigada M, Sturniolo T, Besozzi G et al (2002) Identification of a promiscuous T-cell epitope in Mycobacterium tuberculosis Mce proteins. Infect Immun 70:79–85
Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820
Rajapakse M, Schmidt B, Feng L et al (2007) Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. BMC Bioinformatics 8:459
Rajasagi NK, Kassim SH, Kollias CM et al (2009) CD4+ T cells are required for the priming of CD8+ T cells following infection with herpes simplex virus type 1. J Virol 83:5256–5268
Rammensee H, Bachmann J, Emmerich NP et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219
Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450
Reche PA, Glutting JP, Reinherz EL (2002) Prediction of MHC class I binding peptides using profile motifs. Hum Immunol 63:701–709
Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478
Robinson J, Waller MJ, Fail SC et al (2009) The IMGT/HLA database. Nucleic Acids Res 37(Database issue):D1013–D1017
Rosa DS, Tzelepis F, Cunha MG et al (2004) The pan HLA DR-binding epitope improves adjuvant-assisted immunization with a recombinant protein containing a malaria vaccine candidate. Immunol Lett 92:259–268
Rosa DS, Iwai LK, Tzelepis F et al (2006) Immunogenicity of a recombinant protein containing the Plasmodium vivax vaccine candidate MSP1(19) and two human CD4+ T-cell epitopes administered to non-human primates (Callithrix jacchus jacchus). Microbes Infect 8:2130–2137
Sant AJ, Chaves FA, Jenks SA et al (2005) The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Immunol Rev 207:261–278
Saravia C, Martinez P, Granados DS et al (2008) Identification and evaluation of universal epitopes in Plasmodium vivax duffy binding protein. Biochem Biophys Res Commun 377:1279–1283
Schoenberger SP, Toes RE, van der Voort EI et al (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483
Serruto D, Rappuoli R (2006) Post-genomic vaccine development. FEBS Lett 580:2985–2992
Sette A, Fikes J (2003) Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 15:461–470
Singh H, Raghava GP (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 19:1009–1014
Smith CM, Wilson NS, Waithman J et al (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5:1143–1148
Stern LJ, Brown JH, Jardetzky TS et al (1994) Crystal structure of the human class II MHC protein MHC-DR1 complexed with an influenza virus peptide. Nature 368:215–221
Sturniolo T, Bono E, Ding J et al (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561
Tatsumi T, Kierstead LS, Ranieri E et al (2003) MAGE-6 encodes HLA-DRbeta1*0401-presented epitopes recognized by CD4+ T cells from patients with melanoma or renal cell carcinoma. Clin Cancer Res 9:947–954
Valentino M, Frelinger J (2009) An approach to the identification of T cell epitopes in the genomic era: application to Francisella tularensis. Immunol Res 45(2–3):218–228
Wan XF, Chen G, Luo F et al (2007) A quantitative genotype algorithm reflecting H5N1 Avian influenza niches. Bioinformatics 23:2368–2375
Wang P, Sidney J, Dow C et al (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4:e1000048
Watkins DI, Burton DR, Kallas EG et al (2008) Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med 14:617–621
Wilson CC, Palmer B, Southwood S et al (2001) Identification and antigenicity of broadly cross-reactive and conserved human immunodeficiency virus type 1-derived helper T-lymphocyte epitopes. J Virol 75:4195–4207
Wodarz D, Jansen VA (2001) The role of T cell help for anti-viral CTL responses. J Theor Biol 211:419–432
Xu H, Wipasa J, Yan H et al (2002) The mechanism and significance of deletion of parasite-specific CD4(+) T cells in malaria infection. J Exp Med 195:881–892
Yang X, Yu X (2009) An introduction to epitope prediction methods and software. Rev Med Virol 19:77–96
Zhang GL, Srinivasan KN, Veeramani A et al (2005) PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse. Nucleic Acids Res 33(Web Server issue):W180–W183
Zhang GL, Khan AM, Srinivasan KN et al (2007) Neural models for predicting viral vaccine targets. J Bioinform Comput Biol 3:1207–1225
Zhang S, Zhang H, Zhao J (2009) The role of CD4 T cell help for CD8 CTL activation. Biochem Biophys Res Commun 384:405–408
Acknowledgments
This work was supported by the Brazilian National Research Council (CNPq), the São Paulo State Research Funding Agency (FAPESP), International Centre of Genetic Engineering and Biotechnology (ICGEB), the Ministry of Health (Brazil), and the National Institutes of Health/NIAID (grant number R03 AI 66961-03).
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Rosa, D.S., Ribeiro, S.P. & Cunha-Neto, E. CD4+ T Cell Epitope Discovery and Rational Vaccine Design. Arch. Immunol. Ther. Exp. 58, 121–130 (2010). https://doi.org/10.1007/s00005-010-0067-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00005-010-0067-0