Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

CD4+ T Cell Epitope Discovery and Rational Vaccine Design

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis

Abstract

T cell epitope-driven vaccine design employs bioinformatic algorithms to identify potential targets of vaccines against infectious diseases or cancer. Potential epitopes can be identified with major histocompatibility complex (MHC)-binding algorithms, and the ability to bind to MHC class I or class II indicates a predominantly CD4+ or CD8+ T cell response. Furthermore, an epitope-based vaccine can circumvent evolutionary events favoring immune escape present in native proteins from pathogens. It can also focus on only the most relevant epitopes (i.e. conserved and promiscuous) recognized by the majority of the target population. Mounting evidence points to the critical role of CD4+ T cells in natural antigen encounter and active immunization. In this paper the need for CD4+ T cell help in vaccine development, the selection of CD4+ T cell epitopes for an epitope-based vaccine, and how the approach can be used to induce a protective effect are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alexander J, Sidney J, Southwood S et al (1994) Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides immunity 1:751–761

    CAS  Google Scholar 

  • Barker CJ, Beagley KW, Hafner LM et al (2008) In silico identification and in vivo analysis of a novel T-cell antigen from Chlamydia, NrdB. Vaccine 26:1285–1296

    Article  CAS  PubMed  Google Scholar 

  • Bennett SR, Carbone FR, Karamalis F et al (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478–480

    Article  CAS  PubMed  Google Scholar 

  • Berzofsky JA (1988) Immunodominance in T lymphocyte recognition. Immunol Lett 18:83–92

    Article  CAS  PubMed  Google Scholar 

  • Berzofsky JA, Cease KB, Cornette JL et al (1987) Protein antigenic structures recognized by T cells: potential applications to vaccine design. Immunol Rev 98:9–52

    Article  CAS  PubMed  Google Scholar 

  • Bevan MJ (2004) Helping the CD8(+) T-cell response. Nat Rev Immunol 4:595–602

    Article  CAS  PubMed  Google Scholar 

  • Bian H, Hammer J (2004) Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE. Methods 34:468–475

    Article  CAS  PubMed  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B et al (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518

    Article  CAS  PubMed  Google Scholar 

  • Braga-Neto UM, Marques ET Jr (2006) From functional genomics to functional immunomics: new challenges, old problems, big rewards. PLoS Comput Biol 2:e81

    Article  PubMed  Google Scholar 

  • Calvo-Calle JM, Strug I, Nastke MD et al (2007) Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection. PLoS Pathog 3:1511–1529

    Article  CAS  PubMed  Google Scholar 

  • Carson RT, Vignali KM, Woodland DL et al (1997) T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage. Immunity 7:387–399

    Article  CAS  PubMed  Google Scholar 

  • Cohen WM, Pouvelle-Moratille S, Wang XF et al (2006) Scanning the HIV genome for CD4+ T cell epitopes restricted to HLA-DP4, the most prevalent HLA class II molecule. J Immunol 176:5401–5408

    CAS  PubMed  Google Scholar 

  • Cunha-Neto E (1999) MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans. Braz J Med Biol Res 32:199–205

    Article  CAS  PubMed  Google Scholar 

  • Damico FM, Cunha-Neto E, Goldberg AC, Iwai LK, Marin ML, Hammer J, Kalil J, Yamamoto JH (2005) T cell recognition and cytokine profile induced by melanocyte epitopes in HLA-DRB1* 0405-positive and negative Vogt-Koyanagi-Harada uveitis patients. Invest Ophthalmol Vis Sci 46:2465–2471

    Google Scholar 

  • Davenport MP, Hill AV (1996) Reverse immunogenetics: from HLA-disease associations to vaccine candidates. Mol Med Today 2:38–45

    Article  CAS  PubMed  Google Scholar 

  • De Groot AS, Jesdale BM, Szu E et al (1997) An interactive web site providing major histocompatibility ligand predictions: application to HIV research. AIDS Res Hum Retrovir 13:529–531

    Article  PubMed  Google Scholar 

  • De Groot AS, Bosma A, Chinai N et al (2001) From genome to vaccine: in silico predictions, ex vivo verification. Vaccine 19:4385–4395

    Article  PubMed  Google Scholar 

  • De Groot AS, McMurry J, Moise L (2008) Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 8:620–626

    Article  PubMed  Google Scholar 

  • de Lalla C, Sturniolo T, Abbruzzese L et al (1999) Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction. J Immunol 163:1725–1729

    PubMed  Google Scholar 

  • Depil S, Moralès O, Castelli FA et al (2007) Determination of a HLA II promiscuous peptide cocktail as potential vaccine against EBV latency II malignancies. J Immunother 30:215–226

    Article  CAS  PubMed  Google Scholar 

  • Doolan DL, Southwood S, Chesnut R et al (2000) HLA-DR-promiscuous T cell epitopes from plasmodium falciparum pre-erythrocytic-stage antigens restricted by multiple HLA class II alleles. J Immunol 165:1123–1137

    CAS  PubMed  Google Scholar 

  • Flynn JC, McCormick DJ, Brusic V et al (2004) Pathogenic human thyroglobulin peptides in HLA-DR3 transgenic mouse model of autoimmune thyroiditis. Cell Immunol 229:79–85

    Article  CAS  PubMed  Google Scholar 

  • Fonseca CT, Cunha-Neto E, Goldberg AC et al (2005a) Human T cell epitope mapping of the Schistosoma mansoni 14 kDa fatty acid-binding protein using cells from patients living in areas endemic for schistosomiasis. Microbes Infect 7:204–212

    Article  CAS  PubMed  Google Scholar 

  • Fonseca CT, Cunha-Neto E, Goldberg AC et al (2005b) Identification of paramyosin T cell epitopes associated with human resistance to Schistosoma mansoni infection. Clin Exp Immunol 142:539–547

    CAS  PubMed  Google Scholar 

  • Fonseca SG, Coutinho-Silva A, Fonseca LA et al (2006) Identification of novel consensus CD4 T-cell epitopes from clade B HIV-1 whole genome that are frequently recognized by HIV-1 infected patients. AIDS 20:2263–2273

    Article  CAS  PubMed  Google Scholar 

  • Franco A, Ferrari C, Sette A et al (1995) Viral mutations, TCR antagonism and escape from the immune response. Curr Opin Immunol 7:524–531

    Article  CAS  PubMed  Google Scholar 

  • Fu TM, Friedman A, Ulmer JB et al (1997) Protective cellular immunity: cytotoxic T-lymphocyte responses against dominant and recessive epitopes of influenza virus nucleoprotein induced by DNA immunization. J Virol 71:2715–2721

    CAS  PubMed  Google Scholar 

  • Gandhi RT, Walker BD (2002) Immunologic control of HIV-1. Annu Rev Med 53:149–172

    Article  CAS  PubMed  Google Scholar 

  • Garcia TC, Fonseca CT, Pacifico LG et al (2008) Peptides containing T cell epitopes, derived from Sm14, but not from paramyosin, induce a Th1 type of immune response, reduction in liver pathology and partial protection against Schistosoma mansoni infection in mice. Acta Trop 106:162–167

    Article  CAS  PubMed  Google Scholar 

  • Gowthaman U, Agrewala JN (2008) In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. J Proteome Res 7:154–163

    Article  CAS  PubMed  Google Scholar 

  • Guan P, Doytchinova IA, Zygouri C et al (2003) MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Appl Bioinformatics 2:63–66

    CAS  PubMed  Google Scholar 

  • Guo Y, Niiya H, Azuma T et al (2005) Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood 106:1415–1418

    Article  CAS  PubMed  Google Scholar 

  • Hammer J, Bono E, Gallazzi F et al (1994) Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J Exp Med 180:2353–2358

    Article  CAS  PubMed  Google Scholar 

  • Honeyman MC, Brusic V, Harrison LC (1997) Strategies for identifying and predicting islet autoantigen T-cell epitopes in insulin-dependent diabetes mellitus. Ann Med 29:401–404

    Article  CAS  PubMed  Google Scholar 

  • Hural JA, Friedman RS, McNabb A et al (2002) Identification of naturally processed CD4 T cell epitopes from the prostate-specific antigen kallikrein 4 using peptide based in vitro stimulation. J Immunol 169:557–565

    CAS  PubMed  Google Scholar 

  • Inaba H, Martin W, De Groot AS et al (2006) Thyrotropin receptor epitopes and their relation to histocompatibility leukocyte antigen-DR molecules in Graves’ disease. J Clin Endocrinol Metab 91:2286–2294

    Article  CAS  PubMed  Google Scholar 

  • Iwai LK, Yoshida M, Sidney J et al (2003) In silico prediction of peptides binding to multiple HLA-DR molecules accurately identifies immunodominant epitopes from gp43 of Paracoccidioides brasiliensis frequently recognized in primary peripheral blood mononuclear cell responses from sensitized individuals. Mol Med 9:209–219

    CAS  PubMed  Google Scholar 

  • Iwai LK, Yoshida M, Sadahiro A et al (2007) T-cell recognition of Paracoccidioides brasiliensis gp43-derived peptides in patients with paracoccidioidomycosis and healthy individuals. Clin Vaccine Immunol 14:474–476

    Article  CAS  PubMed  Google Scholar 

  • Khan AM, Miotto O, Heiny AT et al (2006) A systematic bioinformatics approach for selection of epitope-based vaccine targets. Cell Immunol 244:141–147

    Article  CAS  PubMed  Google Scholar 

  • Khanolkar A, Fuller MJ, Zajac AJ (2004) CD4 T cell-dependent CD8 T cell maturation. J Immunol 172:2834–2844

    CAS  PubMed  Google Scholar 

  • Khanolkar A, Badovinac VP, Harty JT (2007) CD8 T cell memory development: CD4 T cell help is appreciated. Immunol Res 39:94–104

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Hoory T, Monie A et al (2008) Enhancement of DNA vaccine potency through coadministration of CIITA DNA with DNA vaccines via gene gun. J Immunol 180:7019–7027

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Song Y, Hoon DS et al (2001) Tumor-reactive T helper lymphocytes recognize a promiscuous MAGE-A3 epitope presented by various major histocompatibility complex class II alleles. Cancer Res 61:4773–4778

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Omiya R, Ruiz M et al (2002) Identification of an antigenic epitope for helper T lymphocytes from carcinoembryonic antigen. Clin Cancer Res 8:3219–3225

    CAS  PubMed  Google Scholar 

  • Koren E, De Groot AS, Jawa V et al (2007) Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin Immunol 124:26–32

    Article  CAS  PubMed  Google Scholar 

  • Lanzavecchia A, Sallusto F (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2:487–492

    Article  CAS  PubMed  Google Scholar 

  • Letvin NL, Mascola JR, Sun Y et al (2006) Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science 312:1530–1533

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xu CF, Blais S et al (2009) Proximal glycans outside of the epitopes regulate the presentation of HIV-1 envelope gp120 helper epitopes. J Immunol 182:6369–6378

    Article  CAS  PubMed  Google Scholar 

  • Lin HH, Zhang GL, Tongchusak S et al (2008) Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 9(suppl 12):S22

    Article  PubMed  Google Scholar 

  • Livingstone AM, Wilson EB, Ontiveros F, Wang JC (2009) Unravelling the mechanisms of help for CD8+ T cell responses. Immunol Res 45(2–3):209–217

    Google Scholar 

  • Mallone R, Nepom GT (2004) MHC Class II tetramers and the pursuit of antigen-specific T cells: define, deviate, delete. Clin Immunol 110:232–242

    Article  CAS  PubMed  Google Scholar 

  • McNeel DG, Nguyen LD, Disis ML (2001) Identification of T helper epitopes from prostatic acid phosphatase. Cancer Res 61:5161–5167

    CAS  PubMed  Google Scholar 

  • Mitra-Kaushik S, Cruz J, Stern LJ et al (2007) Human cytotoxic CD4+ T cells recognize HLA-DR1-restricted epitopes on vaccinia virus proteins A24R and D1R conserved among poxviruses. J Immunol 179:1303–1312

    CAS  PubMed  Google Scholar 

  • Moise L, De Groot AS (2006) Putting immunoinformatics to the test. Nat Biotechnol 24:791–792

    Article  CAS  PubMed  Google Scholar 

  • Moudgil KD, Deng H, Nanda NK et al (1996) Antigen processing and T cell repertoires as crucial aleatory features in induction of autoimmunity. J Autoimmun 9:223–227

    Article  Google Scholar 

  • Mustafa AS (2009) Th1 cell reactivity and HLA-DR binding prediction for promiscuous recognition of MPT63 (Rv1926c), a major secreted protein of Mycobacterium tuberculosis. Scand J Immunol 69:213–222

    Article  CAS  PubMed  Google Scholar 

  • Nielsen M, Lundegaard C, Blicher T et al (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4:e1000107

    Article  PubMed  Google Scholar 

  • Novy P, Quigley M, Huang X et al (2007) CD4 T cells are required for CD8 T cell survival during both primary and memory recall responses. J Immunol 179:8243–8251

    CAS  PubMed  Google Scholar 

  • Ohkuri T, Wakita D, Chamoto K et al (2009) Identification of novel helper epitopes of MAGE-A4 tumour antigen: useful tool for the propagation of Th1 cells. Br J Cancer 100:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Panigada M, Sturniolo T, Besozzi G et al (2002) Identification of a promiscuous T-cell epitope in Mycobacterium tuberculosis Mce proteins. Infect Immun 70:79–85

    Article  CAS  PubMed  Google Scholar 

  • Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    Article  CAS  PubMed  Google Scholar 

  • Rajapakse M, Schmidt B, Feng L et al (2007) Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. BMC Bioinformatics 8:459

    Article  PubMed  Google Scholar 

  • Rajasagi NK, Kassim SH, Kollias CM et al (2009) CD4+ T cells are required for the priming of CD8+ T cells following infection with herpes simplex virus type 1. J Virol 83:5256–5268

    Article  CAS  PubMed  Google Scholar 

  • Rammensee H, Bachmann J, Emmerich NP et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  CAS  PubMed  Google Scholar 

  • Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450

    Article  CAS  PubMed  Google Scholar 

  • Reche PA, Glutting JP, Reinherz EL (2002) Prediction of MHC class I binding peptides using profile motifs. Hum Immunol 63:701–709

    Article  CAS  PubMed  Google Scholar 

  • Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478

    Article  CAS  PubMed  Google Scholar 

  • Robinson J, Waller MJ, Fail SC et al (2009) The IMGT/HLA database. Nucleic Acids Res 37(Database issue):D1013–D1017

    Article  CAS  PubMed  Google Scholar 

  • Rosa DS, Tzelepis F, Cunha MG et al (2004) The pan HLA DR-binding epitope improves adjuvant-assisted immunization with a recombinant protein containing a malaria vaccine candidate. Immunol Lett 92:259–268

    Article  CAS  PubMed  Google Scholar 

  • Rosa DS, Iwai LK, Tzelepis F et al (2006) Immunogenicity of a recombinant protein containing the Plasmodium vivax vaccine candidate MSP1(19) and two human CD4+ T-cell epitopes administered to non-human primates (Callithrix jacchus jacchus). Microbes Infect 8:2130–2137

    Article  CAS  PubMed  Google Scholar 

  • Sant AJ, Chaves FA, Jenks SA et al (2005) The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Immunol Rev 207:261–278

    Article  CAS  PubMed  Google Scholar 

  • Saravia C, Martinez P, Granados DS et al (2008) Identification and evaluation of universal epitopes in Plasmodium vivax duffy binding protein. Biochem Biophys Res Commun 377:1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Schoenberger SP, Toes RE, van der Voort EI et al (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483

    Article  CAS  PubMed  Google Scholar 

  • Serruto D, Rappuoli R (2006) Post-genomic vaccine development. FEBS Lett 580:2985–2992

    Article  CAS  PubMed  Google Scholar 

  • Sette A, Fikes J (2003) Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 15:461–470

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Raghava GP (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 19:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Wilson NS, Waithman J et al (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5:1143–1148

    Article  CAS  PubMed  Google Scholar 

  • Stern LJ, Brown JH, Jardetzky TS et al (1994) Crystal structure of the human class II MHC protein MHC-DR1 complexed with an influenza virus peptide. Nature 368:215–221

    Article  CAS  PubMed  Google Scholar 

  • Sturniolo T, Bono E, Ding J et al (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi T, Kierstead LS, Ranieri E et al (2003) MAGE-6 encodes HLA-DRbeta1*0401-presented epitopes recognized by CD4+ T cells from patients with melanoma or renal cell carcinoma. Clin Cancer Res 9:947–954

    CAS  PubMed  Google Scholar 

  • Valentino M, Frelinger J (2009) An approach to the identification of T cell epitopes in the genomic era: application to Francisella tularensis. Immunol Res 45(2–3):218–228

    Google Scholar 

  • Wan XF, Chen G, Luo F et al (2007) A quantitative genotype algorithm reflecting H5N1 Avian influenza niches. Bioinformatics 23:2368–2375

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Sidney J, Dow C et al (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4:e1000048

    Article  PubMed  Google Scholar 

  • Watkins DI, Burton DR, Kallas EG et al (2008) Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med 14:617–621

    Article  CAS  PubMed  Google Scholar 

  • Wilson CC, Palmer B, Southwood S et al (2001) Identification and antigenicity of broadly cross-reactive and conserved human immunodeficiency virus type 1-derived helper T-lymphocyte epitopes. J Virol 75:4195–4207

    Article  CAS  PubMed  Google Scholar 

  • Wodarz D, Jansen VA (2001) The role of T cell help for anti-viral CTL responses. J Theor Biol 211:419–432

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Wipasa J, Yan H et al (2002) The mechanism and significance of deletion of parasite-specific CD4(+) T cells in malaria infection. J Exp Med 195:881–892

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Yu X (2009) An introduction to epitope prediction methods and software. Rev Med Virol 19:77–96

    Article  CAS  PubMed  Google Scholar 

  • Zhang GL, Srinivasan KN, Veeramani A et al (2005) PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse. Nucleic Acids Res 33(Web Server issue):W180–W183

    Article  CAS  PubMed  Google Scholar 

  • Zhang GL, Khan AM, Srinivasan KN et al (2007) Neural models for predicting viral vaccine targets. J Bioinform Comput Biol 3:1207–1225

    Article  Google Scholar 

  • Zhang S, Zhang H, Zhao J (2009) The role of CD4 T cell help for CD8 CTL activation. Biochem Biophys Res Commun 384:405–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian National Research Council (CNPq), the São Paulo State Research Funding Agency (FAPESP), International Centre of Genetic Engineering and Biotechnology (ICGEB), the Ministry of Health (Brazil), and the National Institutes of Health/NIAID (grant number R03 AI 66961-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edecio Cunha-Neto.

About this article

Cite this article

Rosa, D.S., Ribeiro, S.P. & Cunha-Neto, E. CD4+ T Cell Epitope Discovery and Rational Vaccine Design. Arch. Immunol. Ther. Exp. 58, 121–130 (2010). https://doi.org/10.1007/s00005-010-0067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0067-0

Keywords