Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Adsorption and regeneration dynamic characteristics of methane and hydrogen binary system

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In order to optimize the performance of an adsorption column, the adsorption and regeneration dynamic characteristics were studied for 20% methane and 80% hydrogen binary system on nonisothermal and nonadiabatic conditions. The adsorption dynamic characteristics were studied at various flow rates, 7.2 LPM to15.8 LPM, and at various adsorption pressures, 6 to 12 atm. Also, regeneration dynamic characteristics were studied at various purge rates, 1.5 to 3.5 LPM, and constant pressure, 1.2 atm. Nonisothermal and nonadiabatic models, considering linear driving force model and Langmuir-Freundlich adsorption isotherm model, were considered to compare between prediction and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cen, P. and Yang, R. T.,“Bulk Gas Separation by Pressure Swing Adsorption,”Ind. Eng. Chem. Fundam.,25, 758 (1986).

    Article  CAS  Google Scholar 

  • Choi, W. K., Kwon, T. I. and Yeo, Y.K,“Optimal Operation of the Pressure Swing Adsorption (PSA) Process for CO2 Recovery,”Korean J. Chem. Eng.,20(4), 617 (2003).

    Article  CAS  Google Scholar 

  • Cho, Y S., Cho, S. I. and Heo, J. S.,“Thermodynamic Analysis of Liquid Source Chemical Vapor Deposition Process for the Preparation of a Ba-Sr-Ti Oxide Film,”Korean J. Chem. Eng.,21(1), 286 (2004).

    Article  CAS  Google Scholar 

  • Garg, D. R. and Ruthven, D. M.,“Theoretical Prediction of Breakthrough Curves for Molecular Sieve Adsorption Column-II General Isotherm Solution for Micropore Diffusion Control”Chem. Eng. Sci.,28, 799 (1973).

    Article  CAS  Google Scholar 

  • Garg, D. R. and Ruthven, D. M.,“The Performance of Molecular Sieve Adsorption Column: Systems with Macropore Diffusion Control,”Chem. Eng. Sci.,29, 1961 (1974a).

    Article  CAS  Google Scholar 

  • Garg, D. R. and Ruthven, D. M.,“The Performance of Molecular Sieve Adsorption Column: Systems with Micropore Diffusion Control,”Chem. Eng. Sci.,29, 571 (1974b).

    Article  CAS  Google Scholar 

  • Glueckauf, E.,“Formulas for Diffusion into Sphere and Their Application to Chromatography,”Trans. Faraday Soc.,51, 1540 (1955).

    Article  CAS  Google Scholar 

  • Harwell, J. H., Liapis, A. L., Lichtfield, R. and Hanson, D. T.,“A NonEquilibrium Model for Fixed-Bed Multicomponent Adiabatic Adsorption,”Chem. Eng. Sci.,35, 2287 (1980).

    Article  CAS  Google Scholar 

  • Hills, J. H.,“An Investigation of the Linear Driving Force Approximation to Diffusion in Spherical Particles”Chem. Eng. Sci.,41, 2779 (1986).

    Article  CAS  Google Scholar 

  • Hoffman, K. A. and Chiang, S. T.,“Computational Fluid Dynamics for Engineers” A Publication of Engineering Education System, Wichita (1993).

    Google Scholar 

  • Huang, C. C. and Fair, J. R.,“Study of the Adsorption and Desorption of Multiple Adsorbates in a Fixed Bed,”AIChEJ.,34, 1861 (1988).

    Article  CAS  Google Scholar 

  • Kunii, D. and Smith, J. M.,“Heat Transfer Characteristics of Porous Rocks,”AIChE J.,6, 1, 71 (1960).

    Article  Google Scholar 

  • Kim, S. J., Shim, W. G. and Kim, T. Y.,“Adsorption Equilibrium Characteristics of 2,4-Dichlorophenoxyacetic Acid and 2,4-Dinitrophenol on Granular Activated Carbons,”Korean J. Chem. Eng.,19(6), 967 (2002).

    Article  CAS  Google Scholar 

  • Lee, W. K. and Ko, J. S.,“Kinetic Model for the Simulation of Hen Egg White Lysozyme Adsorption at Solid/Water Interface,”Korean J. Chem. Eng.,20(3), 549 (2003).

    Article  CAS  Google Scholar 

  • Malek, A. and Farooq, S. J.,“Determination of Equilibrium Isotherms using Dynamic Column Breakthrough and Constant Flow Equilibrium Desorption,”Chem. Eng. Data.,41, 25 (1996).

    Article  CAS  Google Scholar 

  • Malek, A. and Farooq, S.,“Kinetic of Hydrocarbon Adsorption on Activated Carbon and Silica Gel,”AIChE J.,43(3), 761 (1997).

    Article  CAS  Google Scholar 

  • Malek, A. and Farooq, S.,“Hydrogen Purification from Refinery Fuel Gas by Pressure Swing Adosrption,”AIChE J.,44(9), 1985 (1998).

    Article  CAS  Google Scholar 

  • Na, B. K., Koo, K. K. and Eum, H. M.,“CO2 Recovery from Flue Gas by PSA Process using Activated Carbon,”Korean J. Chem. Eng.,18(2), 220 (2001).

    Article  CAS  Google Scholar 

  • Panczyk, T. and Rudzinski, W.,“Kinetics of Gas Adsorption on Strongly Heterogeneous Solid Surfaces: A Statistical Rate Theory Approach,”Korean J. Chem. Eng.,21(1), 206 (2004).

    Article  CAS  Google Scholar 

  • Park, J. K., Kim, S. J. and Lee, J. W.,“Adsorption Selectivity of Phenylalanine Imprinted Polymer Prepared by the Wet Phase Inversion Method,”Korean J. Chem. Eng.,20(6), 1066 (2003).

    Article  CAS  Google Scholar 

  • Raghavan, N. S. and Ruthven, D. M., “Dynamic Behavior of an Adiabatic Adsorption Column-II. Numerical Simulation and Analysis of Experimental Data,”Chem. Eng. Sci.,39, 1201 (1984).

    Article  CAS  Google Scholar 

  • Ruthven, D. M.,“Principles of Adsorption and Adsorption Processes,” John Wiley & Sons, New York (1984).

    Google Scholar 

  • Ruthven, D. M., Farooq, S. and Knaebel, K. S.,“Pressure Swing Adsorption,” VCH publishers, New York (1994).

    Google Scholar 

  • Sircar, S. and Kurma, R.,“Adiabatic Adsorption of Bulk Binary Gas Mixtures: Analysis by Constant Pattern Model,”Ind. Eng. Chem. Process Des. Dev.,22, 271 (1983).

    Article  CAS  Google Scholar 

  • Sircar, S. and Kurma, R.,“Column Dynamics for Adsorption of Bulk Binary Gas Mixtures on Activated Carbon,”Sep. Sci. Tech.,21, 919 (1986).

    Article  CAS  Google Scholar 

  • Wakao, N. and Funazkri, T.,“Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Mass Transfer Coefficients in Packed Beds,”Chem. Eng. Sci.,33, 1375 (1978).

    Article  CAS  Google Scholar 

  • Wong, Y W. and Niedzwiecki, J. L.,“A Simplified Model for Multicomponent Fixed Bed Adsorption,”AIChE Symp. Ser.,78, 219 (1982).

    Google Scholar 

  • Wu, J. C., Fan, L. T. and Erickson, L. E.,“Three-point Backward Finite-difference Method for Solving a System of Mixed Hyperbolic-parabolic Partial Differential Equations,”Computers Chem. Engng.,14, 679 (1990).

    Article  CAS  Google Scholar 

  • Yagi, S. and Kunii, D.,“Studies on Heat Transfer Near Wall Surface in Packed Beds,”AIChE J.,6, 1, 97 (1964).

    Google Scholar 

  • Yang, R. T,“Gas Separation by Adsorption Processes,” Butter Worths (1987).

  • Yang, R. T. and Doong, S. J.,“Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation,”AIChE J.,31, 1829 (1985).

    Article  CAS  Google Scholar 

  • Yang, R. T. and Doong, S. J.,“Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models,”AIChE J.,32, 397 (1986).

    Article  Google Scholar 

  • Yang, W C, Shim, W G. and Lee, J. W.,“Adsorption and Desorption Dynamics of Amino Acids in a Nonionic Polymeric Sorbent XAD-16 Column,”Korean J. Chem. Eng.,20(5), 922 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Ki Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, BU., Nam, GM., Choi, DK. et al. Adsorption and regeneration dynamic characteristics of methane and hydrogen binary system. Korean J. Chem. Eng. 21, 821–828 (2004). https://doi.org/10.1007/BF02705527

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705527

Key words