Abstract
The 14-3-3 proteins are small, cytosolic, evolutionaritly conserved proteins expressed abundantly in the nervous system. Although they were discovered more than 30 yr ago, their function in the nervous system has remained enigmatic. Several recent studies have helped to clarify their biological function. Crystallographic investigations have revealed that 14-3-3 proteins exist as dimers and that they contain a specific region for binding to other proteins. The interacting proteins, in turn, contain a 14-3-3 binding motif; proteins that interact with 14-3-3 dimers include PKC and Raf, protein kinases with critical roles in neuronal signaling. These proteins are capable of activating Raf in vitro, and this role has been verified by in vivo studies inDrosophila. Most interestingly, mutations in theDrosophila 14-3-3 genes disrupt neuronal differentiation, synaptic plasticity, and behavioral plasticity, establishing a role for these proteins in the development and function of the nervous system.
Similar content being viewed by others
References
Acs P., Szallasi Z., Kazanietz M. G., and Blumberg P. M. (1995) Differential activation of PKC isozymes by 14-3-3 σ protein.Biochem. Biophys. Res. Commun. 216, 103–109.
Aitken A. (1995) 14-3-3 proteins on the MAP.Trends Biochem. Sci. 20, 95–97.
Aitken A., Collinge D. B., Van Heusden B. P. H., Isobe T., Roseboom, P. H., Rosenfeld G. and Soll J. (1992) 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins.Trends Biochem. Sci. 17, 498–501.
Aitken A., Howell S., Jones D., Madrazo J., Martin H., Patel Y. and Robinson K. (1995) Post-translationally modified 14-3-3 isoforms and inhibition of protein kinase C.Mol. Cell. Biochem. 149/150, 41–49.
Aitken A., Howell S., Jones D., Madrazo J., and Patel Y. (1995) 14-3-3 α and δ are the phosphorylated forms of Raf-activating 14-3-3 β and σ.J. Biol. Chem. 270, 5706–5709.
Boston P. F., Jackson P., Kynoch P. A. M., and Thomson R. J. (1982) Purification, properties and immunohistochemical localisation of human brain 14-3-3 protein.J. Neurochem. 38, 1466–1474.
Boston P. F., Jackson P., and Thomson R. J. (1982) Human 14-3-3 protein: radioimmunoassay, tissue distribution and cerebrospinal fluid levels in patients with neurological disorders.J. Neurochem. 38, 1475–1482.
Brasselman, S. and McCormick, F. (1995) BCR and RAF form a complex in vivo via 14-3-3 proteins.EMBO J. 14, 4839–4848.
Broadie, K. (1994) Synaptogenesis inDrosophila: coupling genetics and electrophysiology.J. Physiol. 88, 123–139.
Broadie K., Rushton E., Skoulakis E. M. C., and Davis R. L. (1997) Leonardo, aDrosophila 14-3-3 protein involved in learning, regulates presynaptic function.Neuron 19, 391–402.
Burgoyne R. D. and Morgan A. (1993) Regulated exocytosis.Biochem. J. 293, 305–316.
Chamberlain L. H., Roth D., and Burgoyne R. D. (1995) Distinct effects of a-SNAP, 14-3-3 proteins and calmodulin on priming and triggering of regulated exocytosis.J. Cell Biol. 130, 1063–1070.
Chang H. C. and Rubin G. M. (1997) 14-3-3ε positively regulates Ras1 mediated signaling inDrosophila.Genes Dev. 11, 1132–1139.
Daum G., Eisenmann-Tappe I., Troppmair J., and Rapp U. R. (1994) The ins and outs of Raf kinases.Trends Biochem. Sci. 19, 474–480.
Davis R. J. (1993) The mitogen-activated protein kinase signal transduction pathway.J. Biol. Chem. 268, 14553–14556.
Davis R. L. (1996) Physiology and biochemistry ofDrosophila learning mutants.Physiological Rev. 76, 299–317.
Dickson B. J., van der Straten A., Dominguez M., and Hafen E. (1996) Mutations modulating Raf signaling inDrosophila eye development.Genetics 142, 163–171.
Erickson P. F. and Moore B. W. (1980) Investigation of the axonal transport of three acidic, soluble proteins (14-3-2, 14-3-3 and S-100) in the rabbit visual system.J. Neurochem. 35, 232–241.
Fantl W. J., Muslin A. J., Kikuchi A., Martin J. A., MacNicol A. M., Gross R. W., and Williams L. T. (1994) Activation of Raf-1 by 14-3-3 proteins.Nature 371, 612–614.
Finkbeiner, S. and Greenberg, M. E. (1996) Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation and plasticity?Neuron 16, 233–236.
Freed E., Symons M., Macdonald S. G., McCormick F., and Ruggieri R. (1994) Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation.Science 265, 1713–1716.
Fu H., Xia K., Pallas D. C., Cui C., Conroy K., Narsimhan R. P., Mamon H., Collier R. J., and Roberts T. M. (1994) Interaction of the protein kinase Raf-1 with 14-3-3 proteins.Science 266, 126–129.
Gillis K. D., Mobner R., and Neher E. (1996) Protein Kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules.Neuron 16, 1209–1220.
Hsich G., Kimbra K., Gibbs C. J., Lee K. H., and Harrington M. G. (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies.N. Engl. J. Med. 335, 924–930.
Ichimura T., Isobe T., Okuyama T., Takahashi N., Araki K., Kuwano R., and Takahashi Y. (1988) Molecular cloning of cDNA coding for brain specific 14-3-3 protein, a protein kinase dependent activator of tyrosine and tryptophan hydroxylases.Proc. Natl. Acad. Sci. USA 85, 7084–7088.
Ichimura T., Isobe T., Okuyama T., Yamauchi T., and Fujisawa H. (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II.FEBS Lett. 219, 79–82.
Ichimura T., Sugano H., Kuwano R., Sunaya T., Okuyama T., and Isobe T. (1991) Widespread distribution of the 14-3-3 protein in verterbrate brains and bovine tissues: correlation with the distributions of calcium-dependent protein kinases.J. Neurochem. 56, 1449–1451.
Irie K., Gotoh Y., Yashar B. M., Errede B., Nishida E., and Matsumoto K. (1994) Stimulatory effects of yeast and mammalian 14-3-3 proteins on the raf protein kinase.Science 265, 1716–1719.
Isobe T., Hiyane Y., Ichimura T., Okuyama T., Takahashi N., Nakajo S., and Nakaya K. (1992) Activation of protein kinase C by the 14-3-3 proteins homologous with Exo1 protein that stimulates calcium-dependent exocytosis.FEBS Lett. 308, 121–124.
Jones D. H., Ley S., and Aitken A. (1995) Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins.FEBS Lett. 368, 55–58.
Karim F., Chang H. C., Therrien M., Wassarman D. A., Laverty T., and Rubin G. M. (1996) A screen for genes that function downstream of Ras1 duringDrosophila eye development.Genetics 143, 315–329.
Kockel L., Vorbraggen G., Jackle H., Mlodzik M., and Bohmann D. (1997) Requirement forDrosophila 14-3-3 σ in cell proliferation and Rafdependent photoreceptor development.Genes Dev. 11, 1140–1147.
Kullmann D. M. and Siegelbaum S. A. (1995). The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire.Neuron 15, 997–1002.
Layfield R., Fergusson J., Aitken A., Lowe J., Landon M., and Mayer R. J. (1996). Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins.Neuroscience Lett. 209, 57–60.
Li S., Janosh P., Tanji M., Rosenfeld G. C., Waymire J. C., Mischack H., Kolch W., and Sedivy J. M. (1995) Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins.EMBO J. 14, 685–696.
Li W., Skoulakis E. M. C., Davis R. L., and Perrimon N. (1997) TheDrosophila 14-3-3 protein Leonardo enhances Torso signaling through D-Raf in a Ras1-dependent manner.Development 124, 4163–4171.
Liu D., Blenkowska J., Petosa C., Collier R. J., Fu H., and Liddington R. (1995) Crystal structure of the zeta isoform of the 14-3-3 protein.Nature 376, 191–194.
Liu Y.-C., Liu Y., Elly C., Yoshida H., Lipkowitz S., and Altman A. (1997) Serine phosphorylation of Cb1 induced by phorbol ester enhances its association with 14-3-3 proteins in T cells via a novel serine-rich 14-3-3-binding motif.J. Biol. Chem. 272, 9979–9985.
Luo, Z., Zhang, X., Rapp, U. and Avruch J. (1995). Identification of the 14-3-3 σ domains important for self association and Raf binding.J. Biol. Chem. 270, 23681–23687.
Makita Y., Okuno S., and Fujisawa H. (1990) Involvement of activator protein in the activation of tryptophan hydroxylase by cAMP-dependent protein kinase.FEBS Lett. 268, 185–188.
Martin H., Patel Y., Jones D., Howell S., Robinson K., and Aitken A. (1993) Antibodies against the major brain isoforms of 14-3-3 protein. An antibody specific for the N-acetylated amino-terminus of a protein.FEBS Lett. 331, 296–303.
Martin H., Rostas J., Patel Y., and Aitken A. (1994) Subcellular localisation of 14-3-3 isoforms in rat brain using specific antibodies.J. Neurochem. 63, 2259–2265.
Michaud N. R., Fabian J. R., Mathes K. D., and Morrison D. K. (1995) 14-3-3 is not essential for Raf-1 function: Identification of Raf-1 proteins that are biologically activated in a 14-3-3 and Ras-independent manner.Mol. Cell. Biol. 15, 3390–3397.
Moore, B. W. and Perez V. J. (1968) Specific acidic proteins of the nervous system in,Physiological and Biochemical Aspects of Nervous Integration. (F. D. Carlson, ed. 343–359. Prentice-Hall, New York, pp. 343–359.
Morgan A. and Burgoyne R. D. (1992) Interaction between protein kinase C and Exol (14-3-3 protein) and its relevance to exocytosis in permeabilized adrenal chromaffin cells.Biochem. J. 807–811.
Morgan A. and Bygourne R. D. (1992) Exol and Exo2 proteins stimulate calcium-dependent exocytosis in permeabilized adrenal chromaffin cells.Nature 355, 833–836.
Morrison D. (1994) 14-3-3: modulators of signaling proteins?.Science 266, 56–57.
Morrison D. K. (1995) Mechanisms regulating Raf-1 activity in signal transduction pathways.Mol. Reprod. Dev. 42, 507–514.
Morrison D. K. and Cutler R. E. J. (1997). The complexity of Raf regulation.Curr. Opin. Cell Biol. 9, 174–179.
Murakami K., Situ S. Y., and Eshete F. (1996). A gene variation of 14-3-3ξ isoform in rat hippocampus.Gene 179, 245–249.
Muslin A. J., Tanner J. W., Allen P. M., and Shaw A. S. (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine.Cell 84, 889–897.
Nielsen P. J. (1991) Primary structure of a human protein kinase regulator protein.Biochem. Biophys. Acta 1088, 425–428.
Peng C.-Y., Graves P. R., Thoma R. S., Wu Z., Shaw A. S., and Piwnica-Worms H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on Serine-216.Science 277, 1501–1505.
Perkins L. A. and Perrimon N. (1991) The molecular genetics of tail development inDrosophila melanogaster.In Vivo 5, 521–532.
Perrimon N. (1994) Signalling pathways initiated by receptor tyrosine kinases inDrosophila.Curr. Opin. Cell Biol. 6, 260–266.
Reuther G. W., Fu H., Cripe L. D., Collier R. J., and Pendergast A. M. (1994) Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family.Science 266, 129–133.
Robinson K., Jones D., Patel Y., Martin H., Madrazo J., Martin S., Howell S., Elmore M., Finnen M. J., and Aitken A. (1994) Mechanism of inhibition of protein kinase C by 14-3-3 isoforms.Biochem. J. 299, 853–861.
Rosenboom P., Weller J., Babila T., Aitken A., Sellers L., Moffet J., Namboodiri M. A. A., and Klein D. C. (1994) Cloning and characterization of the ε and ξ isoforms of the 14-3-3 proteins.DNA Cell Biol. 13, 629–640.
Rosenthal A., Rhee L., Ramin Y., Paro R., Ullrich A., and V.Goeddel D. (1987) Structure and nucleotide sequence of aDrosophila melanogaster protein kinase C gene.EMBO J. 6, 433–441.
Roth, D. and Burgoyne, R. D. (1995) Stimulation of catecholamine secretion form adrenal chromaffin cells by 14-3-3 proteins is due to reorganisation of the cortical actin network.FEBS Lett. 374, 77–81.
Roth D., Morgan A., and Burgoyne R. D. (1993) Identification of a key domain in annexin and 14-3-3 proteins that stimulate calcium-dependent exocytosis in permeabilized adrenal chromaffin cells.FEBS Lett. 320, 207–210.
Schaeffer E., Smith D., Mardon G., Quinn W., and Zuker C. (1989) Isolation and characterization of two newDrosophila protein kinase C genes, including one specifically expressed in photoreceptor cells.Cell 57, 403–412.
Schlessinger J. (1993) How receptor tyrosine kinases activate Ras.TIBS 18, 273–275.
Skoulakis E. M. C. and Davis R. L. (1996) Olfactory learning deficits in mutants for Leonardo, aDrosophila gene encoding a 14-3-3 protein.Neuron 17, 931–944.
Skoulakis E. M. C., Han P.-l., and Davis R. L. (1993) Learning and memory inDrosophila, inMemory Concepts: Basic and Clinical Aspects (Andersen P., Hvalby O., Paulsen O., and Hokfelt B., eds.), Elsevier Science Publishers, Amsterdam, pp. 99–111.
Suen K.-L., Bustelo X. R., and Barbacid M. (1995) Lack of evidence for the activation of the Ras/Raf mitogenic pathway by 14-3-3 proteins in mammalian cells.Oncogene 11, 825–831.
Sutherland C., Alterio J., Campbell D. G., LeBourdelles B., Mallet J., Haavik J., and Cohen P. (1993) Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases 1 and 2.Eur. J. Biochem. 217, 715–722.
Swanson K. D. and Ganguly R. (1992) Characterization of aDrosophila melanogaster gene similar to the mammalian genes encoding the tyrosine/tryptophan hydroxylase activator and protein kinase C inhibitor proteins.Gene 113, 183–190.
Tanji M., Horwitz, R., Rosenfeld, G., and Waymire, J. C. (1994) Activation of protein kinase C by purified bovine brain 14-3-3: comparison with tyrosine hydroxylase activation.J. Neurochem. 63, 1908–1916.
Toker A., Ellis C., Sellers L., and Aitken A. (1990) Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein.Eur. J. Biochem. 191, 421–429.
Toker A., Sellers L., Amess B., Patel Y., Harris A., and Aitken A. (1992) Multiple isoforms of a protein kinase C inhibitor (KCIP/14-3-3) from sheep brain. Amino acid sequence of phosphorylated forms.Eur. J. Biochem. 206, 453–461.
Vincenz C. and Dixit V. M. (1996) 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as Chaperone and Adapter molecules.J. Biol. Chem. 271, 20,029–20,034.
Wang W. and Shakes D. C. (1996) Molecular Evolution of the 14-3-3 protein family.J. Mol. Evol. 43, 384–398.
Wassarman D. A., Therrien M., and Rubin G. M. (1995) The Ras signaling pathway inDrosophila.Curr. Opin. Genet. Dev. 5, 44–50.
Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., and Kondo H. (1993) Developmental regulation of neuronal expression for the h subtype of the 14-3-3 protein, α putative regulatory protein for protein kinase C.Develop. Brain Res. 73.
Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., and Kondo H. (1993) Molecular cloning of rat cDNAs for β and γ subtypes of 14-3-3 protein and developmental changes in expression of their mRNAs in the nervous system.Mol. Brain Res. 17, 135–146.
Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., Kondo H., and Inoue Y. (1994) Molecular cloning of rat cDNAs for the z and q subtypes of 14-3-3 protein and differential distributions of their mRNAs in the brain.Mol. Brain Res. 25, 113–121.
Watanabe M., Isobe T., Okuyama T., Kuwano R., Takahashi Y., and Kondo H. (1991) Molecular cloning of cDNA to rat 14-3-3h chain polypeptide and the neuronal expression of the mRNA in the central nervous system.Mol. Brain Res. 10, 151–158.
Xiao B., Smerdon S. J., Jones D. H., Dodson G. G., Soneji Y., Aitken A., and Gamblin S. J. (1995) Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways.Nature 376, 188–191.
Xing H., Kornfeld K., and Muslin A. J. (1997) The protein kinase KSR interacts with 14-3-3 protein and Raf.Curr. Biol. 7, 294–300.
Zhong Y. (1995) Mediation of PACAP-like neuropeptide transmission by coactivation of Ras/Raf and cAMP signal transduction pathways inDrosophila.Nature 375, 88–92.
Zhong Y. and Pena L. A. (1995) A novel synaptic transmission mediated by a PACAP-like neuropeptide inDrosophila.Neuron 14, 527–536.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Skoulakis, E.M.C., Davis, R.L. 14-3-3 proteins in neuronal development and function. Mol Neurobiol 16, 269–284 (1998). https://doi.org/10.1007/BF02741386
Issue Date:
DOI: https://doi.org/10.1007/BF02741386