Nothing Special   »   [go: up one dir, main page]

Skip to main content

14-3-3 proteins in neuronal development and function

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The 14-3-3 proteins are small, cytosolic, evolutionaritly conserved proteins expressed abundantly in the nervous system. Although they were discovered more than 30 yr ago, their function in the nervous system has remained enigmatic. Several recent studies have helped to clarify their biological function. Crystallographic investigations have revealed that 14-3-3 proteins exist as dimers and that they contain a specific region for binding to other proteins. The interacting proteins, in turn, contain a 14-3-3 binding motif; proteins that interact with 14-3-3 dimers include PKC and Raf, protein kinases with critical roles in neuronal signaling. These proteins are capable of activating Raf in vitro, and this role has been verified by in vivo studies inDrosophila. Most interestingly, mutations in theDrosophila 14-3-3 genes disrupt neuronal differentiation, synaptic plasticity, and behavioral plasticity, establishing a role for these proteins in the development and function of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acs P., Szallasi Z., Kazanietz M. G., and Blumberg P. M. (1995) Differential activation of PKC isozymes by 14-3-3 σ protein.Biochem. Biophys. Res. Commun. 216, 103–109.

    Article  PubMed  CAS  Google Scholar 

  • Aitken A. (1995) 14-3-3 proteins on the MAP.Trends Biochem. Sci. 20, 95–97.

    Article  PubMed  CAS  Google Scholar 

  • Aitken A., Collinge D. B., Van Heusden B. P. H., Isobe T., Roseboom, P. H., Rosenfeld G. and Soll J. (1992) 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins.Trends Biochem. Sci. 17, 498–501.

    Article  PubMed  CAS  Google Scholar 

  • Aitken A., Howell S., Jones D., Madrazo J., Martin H., Patel Y. and Robinson K. (1995) Post-translationally modified 14-3-3 isoforms and inhibition of protein kinase C.Mol. Cell. Biochem. 149/150, 41–49.

    Article  Google Scholar 

  • Aitken A., Howell S., Jones D., Madrazo J., and Patel Y. (1995) 14-3-3 α and δ are the phosphorylated forms of Raf-activating 14-3-3 β and σ.J. Biol. Chem. 270, 5706–5709.

    Article  PubMed  CAS  Google Scholar 

  • Boston P. F., Jackson P., Kynoch P. A. M., and Thomson R. J. (1982) Purification, properties and immunohistochemical localisation of human brain 14-3-3 protein.J. Neurochem. 38, 1466–1474.

    Article  PubMed  CAS  Google Scholar 

  • Boston P. F., Jackson P., and Thomson R. J. (1982) Human 14-3-3 protein: radioimmunoassay, tissue distribution and cerebrospinal fluid levels in patients with neurological disorders.J. Neurochem. 38, 1475–1482.

    Article  PubMed  CAS  Google Scholar 

  • Brasselman, S. and McCormick, F. (1995) BCR and RAF form a complex in vivo via 14-3-3 proteins.EMBO J. 14, 4839–4848.

    Google Scholar 

  • Broadie, K. (1994) Synaptogenesis inDrosophila: coupling genetics and electrophysiology.J. Physiol. 88, 123–139.

    CAS  Google Scholar 

  • Broadie K., Rushton E., Skoulakis E. M. C., and Davis R. L. (1997) Leonardo, aDrosophila 14-3-3 protein involved in learning, regulates presynaptic function.Neuron 19, 391–402.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne R. D. and Morgan A. (1993) Regulated exocytosis.Biochem. J. 293, 305–316.

    PubMed  CAS  Google Scholar 

  • Chamberlain L. H., Roth D., and Burgoyne R. D. (1995) Distinct effects of a-SNAP, 14-3-3 proteins and calmodulin on priming and triggering of regulated exocytosis.J. Cell Biol. 130, 1063–1070.

    Article  PubMed  CAS  Google Scholar 

  • Chang H. C. and Rubin G. M. (1997) 14-3-3ε positively regulates Ras1 mediated signaling inDrosophila.Genes Dev. 11, 1132–1139.

    Article  PubMed  CAS  Google Scholar 

  • Daum G., Eisenmann-Tappe I., Troppmair J., and Rapp U. R. (1994) The ins and outs of Raf kinases.Trends Biochem. Sci. 19, 474–480.

    Article  PubMed  CAS  Google Scholar 

  • Davis R. J. (1993) The mitogen-activated protein kinase signal transduction pathway.J. Biol. Chem. 268, 14553–14556.

    PubMed  CAS  Google Scholar 

  • Davis R. L. (1996) Physiology and biochemistry ofDrosophila learning mutants.Physiological Rev. 76, 299–317.

    CAS  Google Scholar 

  • Dickson B. J., van der Straten A., Dominguez M., and Hafen E. (1996) Mutations modulating Raf signaling inDrosophila eye development.Genetics 142, 163–171.

    PubMed  CAS  Google Scholar 

  • Erickson P. F. and Moore B. W. (1980) Investigation of the axonal transport of three acidic, soluble proteins (14-3-2, 14-3-3 and S-100) in the rabbit visual system.J. Neurochem. 35, 232–241.

    Article  PubMed  CAS  Google Scholar 

  • Fantl W. J., Muslin A. J., Kikuchi A., Martin J. A., MacNicol A. M., Gross R. W., and Williams L. T. (1994) Activation of Raf-1 by 14-3-3 proteins.Nature 371, 612–614.

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner, S. and Greenberg, M. E. (1996) Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation and plasticity?Neuron 16, 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Freed E., Symons M., Macdonald S. G., McCormick F., and Ruggieri R. (1994) Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation.Science 265, 1713–1716.

    Article  PubMed  CAS  Google Scholar 

  • Fu H., Xia K., Pallas D. C., Cui C., Conroy K., Narsimhan R. P., Mamon H., Collier R. J., and Roberts T. M. (1994) Interaction of the protein kinase Raf-1 with 14-3-3 proteins.Science 266, 126–129.

    Article  PubMed  CAS  Google Scholar 

  • Gillis K. D., Mobner R., and Neher E. (1996) Protein Kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules.Neuron 16, 1209–1220.

    Article  PubMed  CAS  Google Scholar 

  • Hsich G., Kimbra K., Gibbs C. J., Lee K. H., and Harrington M. G. (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies.N. Engl. J. Med. 335, 924–930.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura T., Isobe T., Okuyama T., Takahashi N., Araki K., Kuwano R., and Takahashi Y. (1988) Molecular cloning of cDNA coding for brain specific 14-3-3 protein, a protein kinase dependent activator of tyrosine and tryptophan hydroxylases.Proc. Natl. Acad. Sci. USA 85, 7084–7088.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura T., Isobe T., Okuyama T., Yamauchi T., and Fujisawa H. (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II.FEBS Lett. 219, 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura T., Sugano H., Kuwano R., Sunaya T., Okuyama T., and Isobe T. (1991) Widespread distribution of the 14-3-3 protein in verterbrate brains and bovine tissues: correlation with the distributions of calcium-dependent protein kinases.J. Neurochem. 56, 1449–1451.

    Article  PubMed  CAS  Google Scholar 

  • Irie K., Gotoh Y., Yashar B. M., Errede B., Nishida E., and Matsumoto K. (1994) Stimulatory effects of yeast and mammalian 14-3-3 proteins on the raf protein kinase.Science 265, 1716–1719.

    Article  PubMed  CAS  Google Scholar 

  • Isobe T., Hiyane Y., Ichimura T., Okuyama T., Takahashi N., Nakajo S., and Nakaya K. (1992) Activation of protein kinase C by the 14-3-3 proteins homologous with Exo1 protein that stimulates calcium-dependent exocytosis.FEBS Lett. 308, 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Jones D. H., Ley S., and Aitken A. (1995) Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins.FEBS Lett. 368, 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Karim F., Chang H. C., Therrien M., Wassarman D. A., Laverty T., and Rubin G. M. (1996) A screen for genes that function downstream of Ras1 duringDrosophila eye development.Genetics 143, 315–329.

    PubMed  CAS  Google Scholar 

  • Kockel L., Vorbraggen G., Jackle H., Mlodzik M., and Bohmann D. (1997) Requirement forDrosophila 14-3-3 σ in cell proliferation and Rafdependent photoreceptor development.Genes Dev. 11, 1140–1147.

    Article  PubMed  CAS  Google Scholar 

  • Kullmann D. M. and Siegelbaum S. A. (1995). The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire.Neuron 15, 997–1002.

    Article  PubMed  CAS  Google Scholar 

  • Layfield R., Fergusson J., Aitken A., Lowe J., Landon M., and Mayer R. J. (1996). Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins.Neuroscience Lett. 209, 57–60.

    Article  CAS  Google Scholar 

  • Li S., Janosh P., Tanji M., Rosenfeld G. C., Waymire J. C., Mischack H., Kolch W., and Sedivy J. M. (1995) Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins.EMBO J. 14, 685–696.

    PubMed  CAS  Google Scholar 

  • Li W., Skoulakis E. M. C., Davis R. L., and Perrimon N. (1997) TheDrosophila 14-3-3 protein Leonardo enhances Torso signaling through D-Raf in a Ras1-dependent manner.Development 124, 4163–4171.

    PubMed  CAS  Google Scholar 

  • Liu D., Blenkowska J., Petosa C., Collier R. J., Fu H., and Liddington R. (1995) Crystal structure of the zeta isoform of the 14-3-3 protein.Nature 376, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y.-C., Liu Y., Elly C., Yoshida H., Lipkowitz S., and Altman A. (1997) Serine phosphorylation of Cb1 induced by phorbol ester enhances its association with 14-3-3 proteins in T cells via a novel serine-rich 14-3-3-binding motif.J. Biol. Chem. 272, 9979–9985.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Z., Zhang, X., Rapp, U. and Avruch J. (1995). Identification of the 14-3-3 σ domains important for self association and Raf binding.J. Biol. Chem. 270, 23681–23687.

    Article  PubMed  CAS  Google Scholar 

  • Makita Y., Okuno S., and Fujisawa H. (1990) Involvement of activator protein in the activation of tryptophan hydroxylase by cAMP-dependent protein kinase.FEBS Lett. 268, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Martin H., Patel Y., Jones D., Howell S., Robinson K., and Aitken A. (1993) Antibodies against the major brain isoforms of 14-3-3 protein. An antibody specific for the N-acetylated amino-terminus of a protein.FEBS Lett. 331, 296–303.

    Article  PubMed  CAS  Google Scholar 

  • Martin H., Rostas J., Patel Y., and Aitken A. (1994) Subcellular localisation of 14-3-3 isoforms in rat brain using specific antibodies.J. Neurochem. 63, 2259–2265.

    Article  PubMed  CAS  Google Scholar 

  • Michaud N. R., Fabian J. R., Mathes K. D., and Morrison D. K. (1995) 14-3-3 is not essential for Raf-1 function: Identification of Raf-1 proteins that are biologically activated in a 14-3-3 and Ras-independent manner.Mol. Cell. Biol. 15, 3390–3397.

    PubMed  CAS  Google Scholar 

  • Moore, B. W. and Perez V. J. (1968) Specific acidic proteins of the nervous system in,Physiological and Biochemical Aspects of Nervous Integration. (F. D. Carlson, ed. 343–359. Prentice-Hall, New York, pp. 343–359.

    Google Scholar 

  • Morgan A. and Burgoyne R. D. (1992) Interaction between protein kinase C and Exol (14-3-3 protein) and its relevance to exocytosis in permeabilized adrenal chromaffin cells.Biochem. J. 807–811.

  • Morgan A. and Bygourne R. D. (1992) Exol and Exo2 proteins stimulate calcium-dependent exocytosis in permeabilized adrenal chromaffin cells.Nature 355, 833–836.

    Article  PubMed  CAS  Google Scholar 

  • Morrison D. (1994) 14-3-3: modulators of signaling proteins?.Science 266, 56–57.

    Article  PubMed  CAS  Google Scholar 

  • Morrison D. K. (1995) Mechanisms regulating Raf-1 activity in signal transduction pathways.Mol. Reprod. Dev. 42, 507–514.

    Article  PubMed  CAS  Google Scholar 

  • Morrison D. K. and Cutler R. E. J. (1997). The complexity of Raf regulation.Curr. Opin. Cell Biol. 9, 174–179.

    Article  PubMed  CAS  Google Scholar 

  • Murakami K., Situ S. Y., and Eshete F. (1996). A gene variation of 14-3-3ξ isoform in rat hippocampus.Gene 179, 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Muslin A. J., Tanner J. W., Allen P. M., and Shaw A. S. (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine.Cell 84, 889–897.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen P. J. (1991) Primary structure of a human protein kinase regulator protein.Biochem. Biophys. Acta 1088, 425–428.

    PubMed  CAS  Google Scholar 

  • Peng C.-Y., Graves P. R., Thoma R. S., Wu Z., Shaw A. S., and Piwnica-Worms H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on Serine-216.Science 277, 1501–1505.

    Article  PubMed  CAS  Google Scholar 

  • Perkins L. A. and Perrimon N. (1991) The molecular genetics of tail development inDrosophila melanogaster.In Vivo 5, 521–532.

    PubMed  CAS  Google Scholar 

  • Perrimon N. (1994) Signalling pathways initiated by receptor tyrosine kinases inDrosophila.Curr. Opin. Cell Biol. 6, 260–266.

    Article  PubMed  CAS  Google Scholar 

  • Reuther G. W., Fu H., Cripe L. D., Collier R. J., and Pendergast A. M. (1994) Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family.Science 266, 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Robinson K., Jones D., Patel Y., Martin H., Madrazo J., Martin S., Howell S., Elmore M., Finnen M. J., and Aitken A. (1994) Mechanism of inhibition of protein kinase C by 14-3-3 isoforms.Biochem. J. 299, 853–861.

    PubMed  CAS  Google Scholar 

  • Rosenboom P., Weller J., Babila T., Aitken A., Sellers L., Moffet J., Namboodiri M. A. A., and Klein D. C. (1994) Cloning and characterization of the ε and ξ isoforms of the 14-3-3 proteins.DNA Cell Biol. 13, 629–640.

    Article  Google Scholar 

  • Rosenthal A., Rhee L., Ramin Y., Paro R., Ullrich A., and V.Goeddel D. (1987) Structure and nucleotide sequence of aDrosophila melanogaster protein kinase C gene.EMBO J. 6, 433–441.

    PubMed  CAS  Google Scholar 

  • Roth, D. and Burgoyne, R. D. (1995) Stimulation of catecholamine secretion form adrenal chromaffin cells by 14-3-3 proteins is due to reorganisation of the cortical actin network.FEBS Lett. 374, 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Roth D., Morgan A., and Burgoyne R. D. (1993) Identification of a key domain in annexin and 14-3-3 proteins that stimulate calcium-dependent exocytosis in permeabilized adrenal chromaffin cells.FEBS Lett. 320, 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer E., Smith D., Mardon G., Quinn W., and Zuker C. (1989) Isolation and characterization of two newDrosophila protein kinase C genes, including one specifically expressed in photoreceptor cells.Cell 57, 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J. (1993) How receptor tyrosine kinases activate Ras.TIBS 18, 273–275.

    PubMed  CAS  Google Scholar 

  • Skoulakis E. M. C. and Davis R. L. (1996) Olfactory learning deficits in mutants for Leonardo, aDrosophila gene encoding a 14-3-3 protein.Neuron 17, 931–944.

    Article  PubMed  CAS  Google Scholar 

  • Skoulakis E. M. C., Han P.-l., and Davis R. L. (1993) Learning and memory inDrosophila, inMemory Concepts: Basic and Clinical Aspects (Andersen P., Hvalby O., Paulsen O., and Hokfelt B., eds.), Elsevier Science Publishers, Amsterdam, pp. 99–111.

    Google Scholar 

  • Suen K.-L., Bustelo X. R., and Barbacid M. (1995) Lack of evidence for the activation of the Ras/Raf mitogenic pathway by 14-3-3 proteins in mammalian cells.Oncogene 11, 825–831.

    PubMed  CAS  Google Scholar 

  • Sutherland C., Alterio J., Campbell D. G., LeBourdelles B., Mallet J., Haavik J., and Cohen P. (1993) Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases 1 and 2.Eur. J. Biochem. 217, 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Swanson K. D. and Ganguly R. (1992) Characterization of aDrosophila melanogaster gene similar to the mammalian genes encoding the tyrosine/tryptophan hydroxylase activator and protein kinase C inhibitor proteins.Gene 113, 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Tanji M., Horwitz, R., Rosenfeld, G., and Waymire, J. C. (1994) Activation of protein kinase C by purified bovine brain 14-3-3: comparison with tyrosine hydroxylase activation.J. Neurochem. 63, 1908–1916.

    Article  PubMed  CAS  Google Scholar 

  • Toker A., Ellis C., Sellers L., and Aitken A. (1990) Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein.Eur. J. Biochem. 191, 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Toker A., Sellers L., Amess B., Patel Y., Harris A., and Aitken A. (1992) Multiple isoforms of a protein kinase C inhibitor (KCIP/14-3-3) from sheep brain. Amino acid sequence of phosphorylated forms.Eur. J. Biochem. 206, 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Vincenz C. and Dixit V. M. (1996) 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as Chaperone and Adapter molecules.J. Biol. Chem. 271, 20,029–20,034.

    CAS  Google Scholar 

  • Wang W. and Shakes D. C. (1996) Molecular Evolution of the 14-3-3 protein family.J. Mol. Evol. 43, 384–398.

    PubMed  CAS  Google Scholar 

  • Wassarman D. A., Therrien M., and Rubin G. M. (1995) The Ras signaling pathway inDrosophila.Curr. Opin. Genet. Dev. 5, 44–50.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., and Kondo H. (1993) Developmental regulation of neuronal expression for the h subtype of the 14-3-3 protein, α putative regulatory protein for protein kinase C.Develop. Brain Res. 73.

  • Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., and Kondo H. (1993) Molecular cloning of rat cDNAs for β and γ subtypes of 14-3-3 protein and developmental changes in expression of their mRNAs in the nervous system.Mol. Brain Res. 17, 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., Kondo H., and Inoue Y. (1994) Molecular cloning of rat cDNAs for the z and q subtypes of 14-3-3 protein and differential distributions of their mRNAs in the brain.Mol. Brain Res. 25, 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M., Isobe T., Okuyama T., Kuwano R., Takahashi Y., and Kondo H. (1991) Molecular cloning of cDNA to rat 14-3-3h chain polypeptide and the neuronal expression of the mRNA in the central nervous system.Mol. Brain Res. 10, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Xiao B., Smerdon S. J., Jones D. H., Dodson G. G., Soneji Y., Aitken A., and Gamblin S. J. (1995) Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways.Nature 376, 188–191.

    Article  PubMed  CAS  Google Scholar 

  • Xing H., Kornfeld K., and Muslin A. J. (1997) The protein kinase KSR interacts with 14-3-3 protein and Raf.Curr. Biol. 7, 294–300.

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y. (1995) Mediation of PACAP-like neuropeptide transmission by coactivation of Ras/Raf and cAMP signal transduction pathways inDrosophila.Nature 375, 88–92.

    Article  Google Scholar 

  • Zhong Y. and Pena L. A. (1995) A novel synaptic transmission mediated by a PACAP-like neuropeptide inDrosophila.Neuron 14, 527–536.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skoulakis, E.M.C., Davis, R.L. 14-3-3 proteins in neuronal development and function. Mol Neurobiol 16, 269–284 (1998). https://doi.org/10.1007/BF02741386

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741386

Keywords