Abstract
A Gauss-Seidel procedure is applied to increase the convergence of a basic fourth order method for finding polynomial complex zeros. Further acceleration of convergence is performed by using Newton's and Halley's corrections. It is proved that the lower bounds of theR-order of convergence for the proposed serial (single-step) methods lie between 4 and 7. Computational efficiency and numerical examples are also given.
Zusammenfassung
Ein Gauss-Seidel Verfahren wird verwendet zur Beschleunigung der Konvergenz eines Verfahrens vierter Ordnung zur Bestimmung komplexer Polynomwurzeln. Eine weitere Beschleunigung der Konvergenz wird erreicht durch Anwendung von Newton und Halley-Korrekturformeln. Es wird bewiesen, daß die unteren Schranken für dieR-Ordnung der vorgeschlagenen seriellen (Einzelschritt-) Verfahren zwischen 4 und 7 liegen. Die Effizienzzahl und ein numerisches Beispiel wird angegeben.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aberth, O.: Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comp.27, 339–344 (1973).
Alefeld, G., Herzberger, J.: On the convergence speed of some algorithms for the simultaneous approximation of polynomial zeros. SIAM J. Numer. Anal.11, 237–243 (1974).
Ehrlich, L. W.: A modified Newton method for polynomials. Comm. ACM10, 107–108 (1967).
Gargantini, I.: Further applications of circular arithmetic: Schroeder-like algorithms with error bounds for finding zeros of polynomials. SIAM J. Numer. Anal.15, 497–510 (1978).
Hansen, E., Patrick, M.: A family of root finding methods. Numer. Math.27, 257–269 (1977).
Maehly, V. H.: Zur iterativen Auflösung algebraischer Gleichungen. Z. Angew. Math. Phys.5, 260–263 (1954).
Milovanović, G. V., Petković, M. S.: On the convergence order of a modified method for simultaneous finding polynomial zeros. Computing30, 171–178 (1983).
Nourein, A. W. M.: An improvement on two iteration methods for simultaneous determination of the zeros of a polynomial. Intern. J. Computer Math.6, 241–252 (1977).
Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.
Petković, M. S.: Iterative methods for simultaneous inclusion of polynomial zeros. Berlin: Springer 1989.
Petković, M. S., Milovanović, G. V., Stefanović, L. V.: On some higher-order methods for the simultaneous approximation of multiple polynomial zeros. Comput. Math. Appl.12, 951–962 (1986).
Petković, M. S., Stefanović, L. V., Marjanović, Z. M.: A family of simultaneous zero finding methods. Intern. J. Computer Math (to appear).
Sakurai, T., Tori, T., Sugiura, H.: A higher order iteration formula for simultaneous determination of zeros of a polynomial (submitted for publication).
Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann.2, 317–365 (1870).
Varga, R. S.: Matrix iterative analysis. Englewood Cliffs, New Jersey: Prentice Hall 1962.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Petković, M.S., Stefanović, L.V. & Marjanović, Z.M. On theR-order of some accelerated methods for the simultaneous finding of polynomial zeros. Computing 49, 349–361 (1993). https://doi.org/10.1007/BF02248695
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02248695