Abstract
In this paper a polynomial map from Cn to Cm is studied in order to investigate if it is injective out of a set of measure zero. We propose a procedure, based on truncated Gröbner basis computations, which when successful, allows to reduce the problem to an easier map, and so gives a speed-up of the general algorithms using Gröbner basis techniques. Moreover, for the special case of a polynomial map from Cn to Cn where the polynomials are at most quadratic, we propose two criteria for non-injectivity based on the structure of the Jacobian matrix and requiring only basic symbolic computations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Audoly S., D'Angiò L.: On the identifiability of linear compartmental systems: a revisited transfer function approach based on topological properties. Math. Biosci.66, 201–228 (1983)
Cobelli C., Lepschy A.: Romanin-Jacur G., Identifiability of experimental systems and related structural properties. Math. Biosci.44, 1–18 (1979)
D'Angiò L.: On some topological properties of a strongly connected compartmental system with application to the identifiability problem. Math. Biosci.76, 207–220 (1985)
Giovini A., Niesi G.: CoCoA: a user-friendly system for commutative algebra. Proc. DISCO '90. Lecture Notes in Computing Science, Vol. 429, pp. 20–29. Berlin, Heidelberg, New York: Springer 1990
Ollivier F.: Inversibility of rational mappings and structural identifiability in automatics. Proc. ISSAC 89, ACM (1989)
Ollivier F.: Le probléme de l'identifiabilité structurelle globale: étude theorique, méthodes effectives et bornes de complexité, Thése de Doctorat, Ecole Polytechnique (1990)
Raksany A., Lecourtier Y., Walter E., Venot A.: Identifiability and distinguishability testing via Computer Algebra. Math Biosci.77, 245–266 (1985).
Raksanyi A.: Utilisation du calcul formel pour l'étude des systèmes d'équations polynomiales (application en modélisation) Thèse de Doctorat, Université Paris-Dauphine (1986)
Shannon D., Sweedler M.: Using Gröbner bases to determine algebra membership, split surjective algebra homomorphisms and determine birational equivalence, J. Symb. Comp.6 (1988)
Shannon D., Sweedler M.: Using Gröbner bases to determine subalgebra membership, Preprint (1988)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Audoly, S., Bellu, G., Buttu, A. et al. Procedures to investigate injectivity of polynomial maps and to compute the inverse. AAECC 2, 91–103 (1991). https://doi.org/10.1007/BF01810570
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01810570