Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Bipolar neurons in rat visual cortex: A combined Golgi-electron microscope study

  • Published:
Journal of Neurocytology

Summary

Golgi-impregnated bipolar neurons in rat visual cortex have been examined by both light and electron microscopy. Bipolar neurons are encountered throughout layers II to V and are recognized by their spindle-shaped cell bodies and vertically elongate, narrow dendritic trees which may traverse the cortex from layer II to layer V. Although a single primary dendrite usually extends from each end of the cell body, two primary dendrites may extend from one pole, usually the lower one, and an additional short dendrite may emerge from one side. In the electron microscope gold-toned Golgi-impregnated neurons are seen to have folded nuclear envelopes and except at the poles of the cell body where the dendrites emerge, the nucleus is surrounded by only a thin rim of cytoplasm. Both the cell body and the dendrites form asymmetric and symmetric synapses. Usually the axon of a bipolar neuron arises from one of the primary dendrites and it soon assumes a vertical orientation, to either descend or ascend through the cortical neuropil. Some bipolar neurons have myelinated axons and only the initial portion is impregnated in Golgi preparations, but when they are unmyelinated the axons can be seen to form vertical plexuses and asymmetric synapses. Most commonly the terminals synapse with dendritic spines, some of which are derived from apical dendrites of pyramidal cells, but other terminals synapse with the shafts of apical dendrites, and with the cell bodies and dendrites of nonpyramidal cells.

It is apparent that these bipolar neurons are the cells which others have shown to label specifically with antisera to vasoactive intestinal polypeptide (VIP), and it is suggested that the prime role of these cells in the cerebral cortex is to excite the clusters of pyramidal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braitenberg, V., Guglielmotti, V. &Sada, E. (1967) Correlation of crystal growth with the staining of axons by the Golgi procedures.Stain Technology 42, 277–83.

    PubMed  Google Scholar 

  • Bullier, J. &Henry, G. H. (1979) Ordinal position of neurons in cat striate cortex.Journal of Neurophysiology 42, 1251–63.

    PubMed  Google Scholar 

  • Cajal, S. R. y (1911)Histologie du Système Nerveux de l'Homme et des Vertébrés, Vol. IL Paris: Maloine. (Madrid: Instituto Cajal, 1955).

    Google Scholar 

  • Caial, S. R. y (1922) Studien über die Sehrinde der Katze,Journal fur Psychologie und Neurologie 29, 161–81.

    Google Scholar 

  • Colonnier, M. L. (1966) The structural design of the neocortex. InBrain and Conscious Expereince (edited byEccles, J. C.), pp. 1–23, New York: Springer-Verlag.

    Google Scholar 

  • Colonnier, M. (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex.Brain Research 9, 268–87.

    PubMed  Google Scholar 

  • Davis, T. L. &Sterling, P. (1979) Microcircuitry of cat visual cortex: classification of neurons in layer IV of area 17, and identification of the patterns of lateral geniculate input.Journal of Comparative Neurology 188, 599–628.

    PubMed  Google Scholar 

  • Emson, P. C. &Lindvall, O. (1979) Distribution of putative neurotransmitters in the neocortex.Neuroscience 4, 1–30.

    PubMed  Google Scholar 

  • Fahrenkrug, J. (1980) Vasoactive intestinal polypeptide.Trends in Neurosciences,3, 1–2.

    Google Scholar 

  • Fairen, A., Peters, A., &Saldanha, J. (197) A new procedure for examining Golgi impregnated neurons by light and electron microscopy.Journal of Neurocytology 6, 311–37.

    Google Scholar 

  • Feldman, M. L. &Peters, A. (1974) A study of barrels and pyramidal dendritic clusters in the cerebral cortex.Brain Research 77, 55–76.

    PubMed  Google Scholar 

  • Feldman, M. L. &Peters, A. (1978) The forms of non-pyramidal neurons in the visual cortex of the rat.Journal of Comparative Neurology 179, 761–94.

    PubMed  Google Scholar 

  • Hornung, J. P. &Gare y L. J. (1980) Visual cortical neurons receiving thalamic afferents in cat. An ultrastructural study of Golgi identified cells.Experimental Brain Research 41, A13.

    Google Scholar 

  • Hubel D. H. &Wiesel, T. N. (1963) Shape and arrangement of columns in cat's striate cortex.Journal of Physiology 165, 559–68.

    PubMed  Google Scholar 

  • Hubel, D. H. &Wiesel, T. N. (1977) Functional architecture of macaque monkey visual cortex.Proceedings of the Royal Society of London, Series B 198, 1–59.

    Google Scholar 

  • Jones, E. G. (1975) Varieties and distribution of non-pyramidal cells.in the somatic sensory cortex of the squirrel monkey.Journal of Comparative Neurology 160, 205–68.

    PubMed  Google Scholar 

  • Krieg, W. J. S. (1946) Connections of the cerebral cortex. 1. Albino rat. B. Structure of the corticalareas.Journal of Comparative Neurology 84, 277–324.

    Google Scholar 

  • Levay, S. (1973) Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations.Journal of Comparative Neurology 150, 53–86.

    PubMed  Google Scholar 

  • Loren, I., Emson, P. C. Fahrenkrug, J., Björklund, A., Alumets, J., Håkanson, R. P. &Sundler, F. (1979) Distribution of vasoactive intestinal polypeptide in the rat and mouse brain.Neuroscience 4, 1953–76.

    PubMed  Google Scholar 

  • Lund, J. S. (1973) Organization of neurons in the visual cortex area 17, of monkey (Macacamulatta).Journal of Comparative Neurology 147, 455–96.

    PubMed  Google Scholar 

  • Lund, J. S., Henry, G. H., Macqueen, C. L. &Harvey, A. R. (1979) Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey.Journal of Comparative Neurology 184, 599–618.

    PubMed  Google Scholar 

  • Madar, Y. (1980) Receptive field properties of neurons in the visual cortex (area 17) of pigmented rat.Experimental Brain Research 41, A13–14.

    Google Scholar 

  • Mangini, N. J. &Pearlman, A. L. (1980) Laminar distribution of receptive field properties in the primary visual cortex of the mouse.Journal of Comparative Neurology 193, 203–22.

    PubMed  Google Scholar 

  • O'Leary, J. L. (1941) Structure of the area striata of the cat.Journal of Comparative Neurology 75, 131–64.

    Google Scholar 

  • Palay, S. L., Sotelo, C., Peters, A. &Orkand, P. M. (1968) Theaxon hillock and the initial segment.Journal of Cell Biology 38, 193–201.

    PubMed  Google Scholar 

  • Parnavelas, J. G., Burne, R. A., Lin, C.-S. &Woodward, D. J. (1980) Receptive field properties of neurons in the visual cortex of the rat.Society for Neurosdence Abstracts 6, 670.

    Google Scholar 

  • Parnavelas, J. G., Lieberman, A. R. &Webster, K. E. (1977) Organization of neurons in the visual cortex, area 17, of the rat.Journal of Anatomy 124, 305–22.

    PubMed  Google Scholar 

  • Parnavelas, J. G., Sullivan, K., Lieberman, A. R. &Webster, K. E. (1977) Neurons and their synaptic organization in the visual cortex of the rat. Electron microscopy of Golgi preparations.Cell and Tissue Research 183, 499–517.

    PubMed  Google Scholar 

  • Peters, A. (1980) Two neurons in rat visual cortex with axons forming symmetric synapses.Anatomical Record 196, 146A.

    Google Scholar 

  • Peters, A. &Fairén, A. (1978) Smooth and sparsely-spined stellate cells in the visual cortex of the rat: a study using a combined Golgi-electron microscope technique.Journal of Comparative Neurology 181, 129–72.

    PubMed  Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. deF. (1976)The Fine Structure of the Nervous System: The Neurons and Supporting Cells. Philadelphia: Saunders.

    Google Scholar 

  • Peters, A. &Proskauer, C. C. (1980a) Synaptic relationships between a multipolar stellate cell and a pyramidal neuron in the rat visual cortex. A combined Golgi-electron microscope study.Journal of Neurocytology 9, 163–83.

    PubMed  Google Scholar 

  • Peters, A. &Proskauer, C. C. (1980b) Smooth and sparsely-spined cells with myelinated axons in rat visual cortex.Neuroscience 5, 2079–92.

    PubMed  Google Scholar 

  • Peters, A., Proskauer, C. C., Feldman, M. L. &Kimerer, L. (1979) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. V. Degenerating axon terminals synapsing with Golgi impregnated neurons.Journal of Neurocytology 8, 331–57.

    PubMed  Google Scholar 

  • Peters, A., Proskauer, C. C., &Kaiserman-Abramof, I. R. (1968) The small pyramidal neuron of the rat cerebral cortex. The axon hillock and initial segment.Journal of Cell Biology 39, 604–19.

    PubMed  Google Scholar 

  • Peters, A. &Walsh, T. M. (1972) A study of the organization of apical dendrites in the somatic sensory cortex of the rat.Journal of Comparative Neurology 144, 253–68.

    PubMed  Google Scholar 

  • Peters, A., White, E. L. &Fairén, A. (1977) Synapses between identified neuronal elements. An electron microscopic demonstration of degenerating axon terminals synapsing with Golgi-impregnated neurons.Neuroscience Letters 6, 171–5.

    Google Scholar 

  • Phillis, J. W., Kirkpatrick, J. R. &Said, S. I. (1978) Vasoactive intestinal polypeptide excitation of cerebral neurons.Canadian Journal of Physiology and Pharmacology 56, 337–40.

    PubMed  Google Scholar 

  • Ribak, C. E. (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase.Journal of Neurocytology 7, 461–78.

    PubMed  Google Scholar 

  • Schober, W. &Winkelmann, E. (1975) Der visuelle Kortex der Ratte: Cytoarchitektonik und Stereotaktische Parameter.Zeitschrift fÜr mikroskopisch-anatomische Forschung 89, 431–46.

    Google Scholar 

  • Sims, K. B., Hoffman, D. L., Said, S. I. &Zimmerman, E. A. (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytological study.Brain Research 186, 165–83.

    PubMed  Google Scholar 

  • Sloper, J. J. &Powell, T. P. S. (1979) A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices.Philosophical Transactions of the Royal Society of London, Series B 285, 173–97.

    Google Scholar 

  • Somogyi, P. (1977) A specific axo-axonal neuron in the visual cortex of the rat.Brain Research 136, 345–50.

    PubMed  Google Scholar 

  • Somogyi, P. &Cowey, A. (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey.Journal of Comparative Neurology 195, 547–66.

    PubMed  Google Scholar 

  • Szentágothai, J. (1975) The module-concept in cerebral cortex architecture.Brain Research 95, 475–96.

    PubMed  Google Scholar 

  • Toyama, K., Matsunami, K., Ohno, T. &Tokashiki, S. (1974) An intracellular study of neuronal organization in the visual cortex.Experimental Brain Research 21, 45–66.

    Google Scholar 

  • Valverde, F. (1970) The Golgi Method. A tool for comparative structural analyses, inContemporary Research Methods in Neuroanatomy (edited byNauta, W. J. H. andEbbesson, S. O. E.), pp. 12–31. New York: Springer Verlag.

    Google Scholar 

  • Werner, L., Hedlich, A., Winkelmann, E. &Brauer, K. (1979) Versuch einer Identifizierung von Nervenzellen des visuellen Kortex der Ratte nach Nissl-und Golgi-Kopsch-Darstellung.Journal für Hirnforschung 20, 121–39.

    Google Scholar 

  • White, E. L. (1978) Identified neurons in mouse SmI cortex which are postsynaptic to thalamocortical axon terminals. A combined Golgi-electron microscopic and degeneration study.Journal of Comparative Neurology 181, 627–62.

    PubMed  Google Scholar 

  • White, E. L. (1980) Thalamocortical synaptic relations: a review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex.Brain Research Reviews 1, 275–311.

    Google Scholar 

  • White, E. L. &Rock, M. P. (1980) Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin sections.Journal of Neurocytology 9, 615–36.

    PubMed  Google Scholar 

  • Winfield, D. A., Gatter, K. C. &Powell, T. P. S. (1980) An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat.Brain 103, 245–58.

    PubMed  Google Scholar 

  • Winkelmann, E., Brauer, K. &Berger, U. (1975) Zur columnaren Organisation von Pyramidenzellen im visuellen Cortex der Albinoratte.Zeitschrift für mikroskopisch-anatomische Forschung 89, 239–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, A., Kimerer, L.M. Bipolar neurons in rat visual cortex: A combined Golgi-electron microscope study. J Neurocytol 10, 921–946 (1981). https://doi.org/10.1007/BF01258522

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01258522

Keywords

Navigation