Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

High-temperature superconductor antennas: Utilization of low rf losses and of nonlinear effects

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The low radio frequency (r.f.) losses in epitaxial HTS thin films allow the realization of novel antenna structures which have to be excluded in conventional antenna techniques with normal conductors because of the highly reduced radiation efficiency. Thus, the design of miniaturized but nevertheless highly efficient antennas down to a lower limit determined by both the required order of radiation pattern and the frequency bandwidth becomes possible. For a bandwidth of more than about 1%, a considerable margin for a size reduction below the “critical size” is restricted to the case of electrically small antennas and of superdirective antennas with a relatively low order of the radiation pattern, e.g. antennas with a beam of less than 15 dB maximum gain. If the size approaches the lower limit, the antennas show a sharp bandpass frequency response. This is demonstrated by means of experimental results for a novel HTS meander antenna. These bandpass characteristics can be utilized in compact multiport antenna systems in order to decouple subantennas for adjacent frequency bands. Besides the low losses in HTS's, their nonlinear properties can be used in order to realize current-controlled HTS switches for antenna systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Piel and G. Müller,IEEE Trans. Magn. 27, 854 (1991).

    Google Scholar 

  2. P. Carr and B. McAvoy (ed.), special issueIEEE Trans. Microwave Theory Tech. 39, (Sept., 1991).

  3. R. S. Withers and R. W. Ralston,Proc. IEEE 77, 1247 (1989).

    Google Scholar 

  4. M. Nisenoff, J. C. Ritter, G. Price, and S.A. Wolf,FED J. 3, June 1992.

  5. R. C. Hansen,IEEE Trans. Aerosp. Electron. Syst. 26, 345 (1990).

    Google Scholar 

  6. R. J. Dinger,J. Supercond. 3, 287 (1990).

    Google Scholar 

  7. R. J. Dinger, D. R. Bowling, and A. M. Marin,IEEE Trans. Microwave Theory Tech. 39, 1498 (1991).

    Google Scholar 

  8. R. C. Hansen,IEEE Trans. Microwave Theory Tech. 39, 1508 (1991).

    Google Scholar 

  9. R. L. Lewis,IEEE Trans. Antennas Propagat. 35, 1375 (1987).

    Google Scholar 

  10. L. J. Chu,J. Appl. Phys. 19, 1163 (1948).

    Google Scholar 

  11. H. A. Wheeler,Proc. IEEE 35, 1479 (1947).

    Google Scholar 

  12. H. A. Wheeler,IEEE Trans. Antennas Propagat. 23, 462 (1975).

    Google Scholar 

  13. R. C. Hansen,Proc. IEEE 69, 170 (1981).

    Google Scholar 

  14. H. Chaloupka, Proc. URSI Int. Symp. Electrom. Theory, Sydney, 1992, p. 266.

  15. H. F. Pues and A. R. van de Capelle,IEEE Trans. Antennas Propagat. 37, 1345 (1989).

    Google Scholar 

  16. L. H. Hoang and M. Founder,IEEE Trans. Antennas Propagat. 20, 509 (1972).

    Google Scholar 

  17. G. B. Walker and C. R. Haden,J. Appl. Phys. 40, 2035 (1969).

    Google Scholar 

  18. O. G. Vendik, A. B. Kozyrev, and S. E. Krivetskov,Sov. Phys.-Tech. Phys. Lett. 6, 611 (1980).

    Google Scholar 

  19. S. K. Khamas, M. J. Mehler, T. S. M. Maclean, C. E. Gough, N. McN. Alford, and M. A. Harmer,Electron. Lett. 24, 460 (1988).

    Google Scholar 

  20. S. K. Khamas, G. G. Cook, S. P. Kingsley, and R. C. Woods,Electron. Lett. 26, 654 (1990).

    Google Scholar 

  21. K. Itoh, O. Ishei, Y. Koshimoto, and K. Cho,Proc. Int. Symp. Supercond. (ISS' 91), Tokyo, 1991.

  22. H. Chaloupka, N. Klein, M. Peiniger, H. Piel, A. Pischke, and G. Splitt,IEEE Trans. Microwave Theory Tech. 39, 1513 (1991).

    Google Scholar 

  23. R. J. Dinger, D. R. Bowling, A. M. Martin, and J. Talvacchio,IEEE-MIT Symp. Digest Boston, 1991, p. 1243.

  24. H. Chaloupka, B. Fortyr, M. Peiniger, and A. Pischke, European Patent Appl. 911106920.

  25. H. Chaloupka, H. Piel, A. Pischke, G. Gieres, M. Peiniger, L. Schultz, M. Bode, and J. Schubert;IEEE-MIT Symp. Digest, Albuquerque, New Mexico, 1992, p. 189.

  26. G. Splitt,Proc. 20th European Microwave Conf., Budapest, 1990, p. 1481.

  27. O. G. Vendik, A. Ya. Zaionchovski, S. G. Kolesov,Sov. J. Low. Temp. Phys. 12, 325 (1986).

    Google Scholar 

  28. H. Chaloupka, M. Jeck, S. G. Kolesov, O. G. Vendik, Proc. 22nd European Microwave Conf., Helsinki, 1992, p. 189.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaloupka, H. High-temperature superconductor antennas: Utilization of low rf losses and of nonlinear effects. J Supercond 5, 403–416 (1992). https://doi.org/10.1007/BF00618141

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618141

Key words

Navigation