Abstract
The low radio frequency (r.f.) losses in epitaxial HTS thin films allow the realization of novel antenna structures which have to be excluded in conventional antenna techniques with normal conductors because of the highly reduced radiation efficiency. Thus, the design of miniaturized but nevertheless highly efficient antennas down to a lower limit determined by both the required order of radiation pattern and the frequency bandwidth becomes possible. For a bandwidth of more than about 1%, a considerable margin for a size reduction below the “critical size” is restricted to the case of electrically small antennas and of superdirective antennas with a relatively low order of the radiation pattern, e.g. antennas with a beam of less than 15 dB maximum gain. If the size approaches the lower limit, the antennas show a sharp bandpass frequency response. This is demonstrated by means of experimental results for a novel HTS meander antenna. These bandpass characteristics can be utilized in compact multiport antenna systems in order to decouple subantennas for adjacent frequency bands. Besides the low losses in HTS's, their nonlinear properties can be used in order to realize current-controlled HTS switches for antenna systems.
Similar content being viewed by others
References
H. Piel and G. Müller,IEEE Trans. Magn. 27, 854 (1991).
P. Carr and B. McAvoy (ed.), special issueIEEE Trans. Microwave Theory Tech. 39, (Sept., 1991).
R. S. Withers and R. W. Ralston,Proc. IEEE 77, 1247 (1989).
M. Nisenoff, J. C. Ritter, G. Price, and S.A. Wolf,FED J. 3, June 1992.
R. C. Hansen,IEEE Trans. Aerosp. Electron. Syst. 26, 345 (1990).
R. J. Dinger,J. Supercond. 3, 287 (1990).
R. J. Dinger, D. R. Bowling, and A. M. Marin,IEEE Trans. Microwave Theory Tech. 39, 1498 (1991).
R. C. Hansen,IEEE Trans. Microwave Theory Tech. 39, 1508 (1991).
R. L. Lewis,IEEE Trans. Antennas Propagat. 35, 1375 (1987).
L. J. Chu,J. Appl. Phys. 19, 1163 (1948).
H. A. Wheeler,Proc. IEEE 35, 1479 (1947).
H. A. Wheeler,IEEE Trans. Antennas Propagat. 23, 462 (1975).
R. C. Hansen,Proc. IEEE 69, 170 (1981).
H. Chaloupka, Proc. URSI Int. Symp. Electrom. Theory, Sydney, 1992, p. 266.
H. F. Pues and A. R. van de Capelle,IEEE Trans. Antennas Propagat. 37, 1345 (1989).
L. H. Hoang and M. Founder,IEEE Trans. Antennas Propagat. 20, 509 (1972).
G. B. Walker and C. R. Haden,J. Appl. Phys. 40, 2035 (1969).
O. G. Vendik, A. B. Kozyrev, and S. E. Krivetskov,Sov. Phys.-Tech. Phys. Lett. 6, 611 (1980).
S. K. Khamas, M. J. Mehler, T. S. M. Maclean, C. E. Gough, N. McN. Alford, and M. A. Harmer,Electron. Lett. 24, 460 (1988).
S. K. Khamas, G. G. Cook, S. P. Kingsley, and R. C. Woods,Electron. Lett. 26, 654 (1990).
K. Itoh, O. Ishei, Y. Koshimoto, and K. Cho,Proc. Int. Symp. Supercond. (ISS' 91), Tokyo, 1991.
H. Chaloupka, N. Klein, M. Peiniger, H. Piel, A. Pischke, and G. Splitt,IEEE Trans. Microwave Theory Tech. 39, 1513 (1991).
R. J. Dinger, D. R. Bowling, A. M. Martin, and J. Talvacchio,IEEE-MIT Symp. Digest Boston, 1991, p. 1243.
H. Chaloupka, B. Fortyr, M. Peiniger, and A. Pischke, European Patent Appl. 911106920.
H. Chaloupka, H. Piel, A. Pischke, G. Gieres, M. Peiniger, L. Schultz, M. Bode, and J. Schubert;IEEE-MIT Symp. Digest, Albuquerque, New Mexico, 1992, p. 189.
G. Splitt,Proc. 20th European Microwave Conf., Budapest, 1990, p. 1481.
O. G. Vendik, A. Ya. Zaionchovski, S. G. Kolesov,Sov. J. Low. Temp. Phys. 12, 325 (1986).
H. Chaloupka, M. Jeck, S. G. Kolesov, O. G. Vendik, Proc. 22nd European Microwave Conf., Helsinki, 1992, p. 189.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chaloupka, H. High-temperature superconductor antennas: Utilization of low rf losses and of nonlinear effects. J Supercond 5, 403–416 (1992). https://doi.org/10.1007/BF00618141
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00618141