Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Channel Capacity Analysis of Various Adaptive Transmission Schemes and BER Performance at Beaulieu-Xie Fading

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Optimization of spectral efficiency and quality of service can attain functional channel capacity for a wireless communication system. The channel capacity analysis over a fading channel is essential for realizing this goal. A recently developed model called Beaulieu–Xie fading channel model acquires the flavors of flexibility from Nakagami-m fading parameters and the non-centralized chi-distribution of the Rician fading model, which characterizes both line of sight and non-line of sight channels. The current work presents the channel capacity analysis with adaptive transmission techniques over Beaulieu–Xie fading channels. Various adaptive transmission schemes, such as channel inversion with a fixed-rate, truncated channel inversion with a fixed-rate, and optimal rate adaptation, are evaluated for the Beaulieu–Xie fading channel model. Additionally, the performance of the wireless system in terms of the bit error rate of coherent and non-coherent modulation is derived mathematically for this fading channel. Lastly, the mathematical expressions derived are verified with the help of Monte–Carlo simulation or standard results available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. M. K. Simon, M.-S. Alouini, Digital Communication over Fading Channels (Wiley-IEEE Press, New York, 2004).

    Book  Google Scholar 

  2. J. Proakis, M. Salehi, Digital Communications (McGraw-Hill Science/Engineering/Math, New York, 2007). URI: http://www.amazon.com/Digital-Communications-Edition-John-Proakis/dp/0072957166.

    Google Scholar 

  3. M. Nakagami, "The m-distribution—a general formula of intensity distribution of rapid fading," in Statistical Methods in Radio Wave Propagation (Elsevier, 1960). DOI: https://doi.org/10.1016/B978-0-08-009306-2.50005-4.

    Chapter  Google Scholar 

  4. N. C. Beaulieu, X. Jiandong, "A novel fading model for channels with multiple dominant specular components," IEEE Wirel. Commun. Lett., v.4, n.1, p.54 (2015). DOI: https://doi.org/10.1109/LWC.2014.2367501.

    Article  Google Scholar 

  5. P. S. Chauhan, S. Kumar, S. K. Soni, "On the physical layer security over Beaulieu-Xie fading channel," AEU - Int. J. Electron. Commun., v.113, p.152940 (2020). DOI: https://doi.org/10.1016/j.aeue.2019.152940.

    Article  Google Scholar 

  6. A. Olutayo, H. Ma, J. Cheng, J. F. Holzman, "Level crossing rate and average fade duration for the Beaulieu-Xie fading model," IEEE Wirel. Commun. Lett., v.6, n.3, p.326 (2017). DOI: https://doi.org/10.1109/LWC.2017.2685506.

    Article  Google Scholar 

  7. V. Kansal, S. Singh, "Analysis of effective capacity over Beaulieu-Xie fading model," in WIECON-ECE 2017 - IEEE International WIE Conference on Electrical and Computer Engineering 2017 (IEEE, 2018). DOI: https://doi.org/10.1109/WIECON-ECE.2017.8468917.

    Chapter  Google Scholar 

  8. V. Kansal, S. Singh, "Analysis of average symbol error probability of MDPSK, MFSK and MPSK in the Beaulieu-Xie fading," in 2018 6th Edition of International Conference on Wireless Networks & Embedded Systems (WECON) (IEEE, 2018). DOI: https://doi.org/10.1109/WECON.2018.8782053.

    Chapter  Google Scholar 

  9. M.-S. Alouini, A. J. Goldsmith, "Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques," IEEE Trans. Veh. Technol., v.48, n.4, p.1165 (1999). DOI: https://doi.org/10.1109/25.775366.

    Article  Google Scholar 

  10. M. D. Laishram, D. S. Aheibam, "Performance of dual-branch selection combining receiver over Fluctuating Two-Ray (FTR) fading channels for 5G mmWave communications," AEU - Int. J. Electron. Commun., v.117, p.153093 (2020). DOI: https://doi.org/10.1016/j.aeue.2020.153093.

    Article  Google Scholar 

  11. A. D. Singh, R. Subadar, "Capacity analysis of M-SC receivers over TWDP fading channels," AEU - Int. J. Electron. Commun., v.68, n.2, p.166 (2014). DOI: https://doi.org/10.1016/j.aeue.2013.08.001.

    Article  Google Scholar 

  12. H. Zhao, Z. Liu, M.-S. Alouini, "Different power adaption methods on fluctuating two-ray fading channels," IEEE Wirel. Commun. Lett., v.8, n.2, p.592 (2019). DOI: https://doi.org/10.1109/LWC.2018.2881158.

    Article  Google Scholar 

  13. R. Subadar, A. D. Singh, "Performance of M-MRC receivers over TWDP fading channels," AEU - Int. J. Electron. Commun., v.68, n.6, p.569 (2014). DOI: https://doi.org/10.1016/j.aeue.2014.01.003.

    Article  Google Scholar 

  14. V. A. Aalo, "Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment," IEEE Trans. Commun., v.43, n.8, p.2360 (1995). DOI: https://doi.org/10.1109/26.403769.

    Article  Google Scholar 

  15. M. Olyaee, M. Eslami, J. Haghighat, "Performance of maximum ratio combining of fluctuating two-ray (FTR) mmWave channels for 5G and beyond communications," Trans. Emerg. Telecommun. Technol., v.30, n.10 (2019). DOI: https://doi.org/10.1002/ett.3601.

    Article  Google Scholar 

  16. V. Kansal, S. Singh, "Capacity analysis of maximal ratio combining over Beaulieu-Xie fading," Ann. Telecommun., v.76, n.1–2, p.43 (2021). DOI: https://doi.org/10.1007/s12243-020-00762-7.

    Article  Google Scholar 

  17. I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, 2015).

    Google Scholar 

  18. S. Janarthanan, V. Bhaskar, "Capacity analysis of Rayleigh fading channels in low signal-to-noise ratio regime for maximal ratio combining diversity because of combining errors," IET Commun., v.7, n.8, p.745 (2013). DOI: https://doi.org/10.1049/iet-com.2012.0647.

    Article  Google Scholar 

  19. A. Sharma, V. K. Dwivedi, G. Singh, "Channel capacity with suboptimal adaptation technique over generalized-K fading using marginal moment generating function," Radioelectron. Commun. Syst., v.59, n.8, p.325 (2016). DOI: https://doi.org/10.3103/S073527271608001X.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laishram Mona Devi.

Ethics declarations

ADDITIONAL INFORMATION

L. M. Devi and A. D. Singh

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347022010034 with DOI: https://doi.org/10.20535/S0021347022010034

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 1, pp. 23-32, January, 2022 https://doi.org/10.20535/S0021347022010034 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, L.M., Singh, A.D. Channel Capacity Analysis of Various Adaptive Transmission Schemes and BER Performance at Beaulieu-Xie Fading. Radioelectron.Commun.Syst. 65, 18–26 (2022). https://doi.org/10.3103/S0735272722010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272722010034

Navigation