Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Wavelet-Recognition of the Type of Dynamic Object Detected by an Optoelectronic Device

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

An algorithm for automatic recognition of the type of dynamic object detected by an optoelectronic device with a priori uncertainty about the current background-target environment is proposed. Recognition is carried out from samples of statistics in the form of the energies of wavelet spectra of elevation and azimuth measurements and the calculated maximum range of the detected object. The recognition criterion is unbiased and maximum-power one. Modeling has shown that the algorithm is highly efficient and implementable in real time on modern PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Z. Kriksunov, Night-Vision Instruments (Tekhnika, Kiev, 1975) [in Russian].

    Google Scholar 

  2. V. M. Svistov, Radar Signals and Their Processing (Sov. Radio, Moscow, 1977) [in Russian].

    Google Scholar 

  3. N. K. Smolentsev, Fundamentals of the Theory of Wavelets. Wavelets in MATLAB (DMK Press, Moscow, 2008) [in Russian].

    Google Scholar 

  4. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, 1971; Mir, Moscow, 1989).

    MATH  Google Scholar 

  5. A. N. Katulev and M. F. Malevinsky, “A Wavelet Family Based on the Zero-Order Prolate Spheroidal Wave Function,” Vestn. Tver Gos. Univ. Ser. Prikl. Mat., No. 1, 53–66 (2017).

    Google Scholar 

  6. A. N. Katulev and M. F. Malevinsky, “Wavelet-Odd Prolate Spheroidal Wave Functions in the Problem of Two-Dimensional Image Segmentation,” Avtometriya 52 (3), 10–19 (2016) [Optoelectron., Instrum. Data Process. 52 (3), 223–230 (2016)].

    Google Scholar 

  7. A. A. Potapov, Yu. V. Gulyaev, S. A. Nikitov, et al., Novel Methods of Image Processing (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  8. A. V. Lapko and V. A. Lapko, “Construction of Confidence Boundaries for the Decision Function in a Two-Alternative Problem of Pattern Recognition,” Avtometriya 51 (4), 62–67 (2015) [Optoelectron., Instrum. Data Process. 51 (4), 372–377 (2015)].

    Google Scholar 

  9. M. V. Gashnikov, N. I. Glumov, N. Yu. Il’yasova, et al., Methods of Computer Image Processing (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  10. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Person Prentice Hall, Lexington, 2004; Technosphere, Moscow, 2006).

    Google Scholar 

  11. D. Cox and D. Hinckley, Theoretical Statistics (Chapman and Hall, London, 1974; Mir, Moscow, 1978).

    Google Scholar 

  12. A. K. Mitropolsky, Methods of Statistical Computations (Nauka, Moscow, 1971).

    Google Scholar 

  13. Guide of Air Defense Officer, Ed. by G. V. Zimin and S. K. Burmistrova (Voennoe Izd-vo, Moscow, 1987) [in Russian].

  14. A. N. Katulev, A. A. Khramichev, and O. V. Guzenko “Criterion and Algorithm for Detecting Dynamic Objects in a Complex Background by a Low-Contrast Point Image,” Avtometriya 51(2), 38–48 (2015) [Optoelectron., Instrum. Data Process. 51(2), 134–143 (2015)].

    Google Scholar 

  15. E. J. Vilkas, Optimality in Games and Decisions (Nauka, Moscow, 1970) [in Russian].

    MATH  Google Scholar 

  16. Yu. G. Sosulin, Theoretical Foundations of Radar and Radio Navigation (Radio i Svyaz’, Moscow, 1992) [in Russian].

    Google Scholar 

  17. S. Z. Kuzmin, Fundamentals of the Theory of Digital Processing of Radar Information (Sov. Radio, Moscow, 1974) [in Russian].

    Google Scholar 

  18. A. E. Basharinov and B. S. Fleishman, Methods of Statistical Sequential Analysis and Their Radio Engineering Application (Sov. Radio, Moscow, 1962) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Katulev.

Additional information

Original Russian Text © A.N. Katulev, M.F. Malevinsky, 2018, published in Avtometriya, 2018, Vol. 54, No. 3, pp. 61–69.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katulev, A.N., Malevinsky, M.F. Wavelet-Recognition of the Type of Dynamic Object Detected by an Optoelectronic Device. Optoelectron.Instrument.Proc. 54, 262–269 (2018). https://doi.org/10.3103/S8756699018030081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699018030081

Keywords

Navigation