Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Local uncorrelated local discriminant embedding for face recognition

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The feature extraction algorithm plays an important role in face recognition. However, the extracted features also have overlapping discriminant information. A property of the statistical uncorrelated criterion is that it eliminates the redundancy among the extracted discriminant features, while many algorithms generally ignore this property. In this paper, we introduce a novel feature extraction method called local uncorrelated local discriminant embedding (LULDE). The proposed approach can be seen as an extension of a local discriminant embedding (LDE) framework in three ways. First, a new local statistical uncorrelated criterion is proposed, which effectively captures the local information of interclass and intraclass. Second, we reconstruct the affinity matrices of an intrinsic graph and a penalty graph, which are mentioned in LDE to enhance the discriminant property. Finally, it overcomes the small-sample-size problem without using principal component analysis to preprocess the original data, which avoids losing some discriminant information. Experimental results on Yale, ORL, Extended Yale B, and FERET databases demonstrate that LULDE outperforms LDE and other representative uncorrelated feature extraction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belhumeur, P.N., Hespanha, J.P., Kriegman, D., 1997. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Patt. Anal. Mach. Intell., 19(7):711–720. http://dx.doi.org/10.1109/34.598228

    Article  Google Scholar 

  • Belkin, M., Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and data representation. Neur. Comput., 15(6):1373–1396.

    Article  Google Scholar 

  • Chen, H.T., Chang, H.W., Liu, T.L., 2005. Local discriminant embedding and its variants. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.846–853. http://dx.doi.org/10.1109/CVPR.2005.216

    Google Scholar 

  • Chen, Y., Zheng, W.S., Xu, X.H., et al., 2013. Discriminant subspace learning constrained by locally statistical uncorrelation for face recognition. Neur. Netw., 42:28–43. http://dx.doi.org/10.1016/j.neunet.2013.01.009

    Article  Google Scholar 

  • Fan, Z.Z., Xu, Y., Zhang, D., 2011. Local linear discriminant analysis framework using sample neighbors. IEEE Trans. Neur. Netw., 22(7):1119–1132. http://dx.doi.org/10.1109/TNN.2011.2152852

    Article  Google Scholar 

  • He, X.F., Niyogi, P., 2003. Locality preserving projections. Proc. Advances in Neural Information Processing Systems, p.327–334.

    Google Scholar 

  • Jin, Z., Yang, J.Y., Hu, Z.S., et al., 2001. Face recognition based on the uncorrelated discriminant transformation. Patt. Recog., 34(7):1405–1416. http://dx.doi.org/10.1016/S0031-3203(00)00084-4

    Article  Google Scholar 

  • Jing, X.Y., Zhang, D., Jin, Z., 2003. UODV: improved algorithm and generalized theory. Patt. Recog., 36(11):2593–2602. http://dx.doi.org/10.1016/S0031-3203(03)00177-8

    Article  Google Scholar 

  • Jing, X.Y., Li, S., Zhang, D., et al., 2011. Face recognition based on local uncorrelated and weighted global uncorrelated discriminant transforms. Proc. 18th IEEE Int. Conf. on Image Processing, p.3049–3052. http://dx.doi.org/10.1109/ICIP.2011.6116307

    Google Scholar 

  • Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323–2326. http://dx.doi.org/10.1126/science.290.5500.2323

    Article  Google Scholar 

  • Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323. http://dx.doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  • Turk, M., Pentland, A., 1991. Eigenfaces for recognition. J. Cogn. Neurosci., 3(1):71–86.

    Article  Google Scholar 

  • Wong, W.K., Zhao, H.T., 2012. Supervised optimal locality preserving projection. Patt. Recog., 45(1):186–197. http://dx.doi.org/10.1016/j.patcog.2011.05.014

    Article  Google Scholar 

  • Yan, S.C., Xu, D., Zhang, B.Y., et al., 2007. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Patt. Anal. Mach. Intell., 29(1):40–51. http://dx.doi.org/10.1109/TPAMI.2007.250598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-hu Ma.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61402310), the Natural Science Foundation of Jiangsu Province, China (No. BK20141195), and the State Key Laboratory for Novel Software Technology Foundation of Nanjing University, China (No. KFKT2014B11)

ORCID: Xiao-hu MA, http://orcid.org/0000-0002-2384-3137

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Xh., Yang, M. & Zhang, Z. Local uncorrelated local discriminant embedding for face recognition. Frontiers Inf Technol Electronic Eng 17, 212–223 (2016). https://doi.org/10.1631/FITEE.1500255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500255

Key words

CLC number

Navigation