In this section, we state and prove our main results. In particular, we establish the two-dimensional versions of the inequalities given in [7]. Throughout this section, we will assume that the following hypotheses hold:
(H1) \(\mathbb{T}_{1}\) and \(\mathbb{T}_{2}\) are any two time scales with (i) \(t_{0}, s_{1}, k_{1}, x, z\in \mathbb{T}_{1}\); (ii) \(t_{0}, t_{1}, r_{1}, y, w\in \mathbb{T}_{2}\).
(H2) \(p_{1}\), \(q_{1}\) are any two real numbers such that \(p_{1}>1\), \(q_{1}>1\) with \(1/p_{1}+1/q_{1}=1\).
(H3) For \(t_{0}\in \mathbb{T}_{1}, \mathbb{T}_{2}\) we denote the subintervals of \(\mathbb{T}_{1}\), \(\mathbb{T}_{2}\) by \(I_{x}=[t_{0}, x)_{\mathbb{T}_{1}}\), \(I_{z}=[t_{0}, z)_{\mathbb{T}_{1}}\), \(I_{y}=[t_{0}, y)_{\mathbb{T}_{2}}\) and \(I_{w}=[t_{0}, w)_{\mathbb{T}_{2}}\), where \(x, z\in \Omega _{1}=[t_{0}, \infty )\cap \mathbb{T}_{1}\) and \(y,w\in \Omega _{2}=[t_{0}, \infty )\cap \mathbb{T}_{2}\).
(H4) There exist two functions Φ and Ψ which are real-valued, nonnegative, convex, and submultiplicative, defined on \([ 0, \infty )\). A function \(f^{\ast }\) is submultiplicative if \(f^{\ast }(x_{1}y_{1})\leq f^{\ast }(x_{1})f^{\ast }(y_{1})\) for \(x_{1}, y_{1}\geq 0\).
Theorem 4
Let (H1), (H2) be satisfied and \(f^{\ast }(s_{1}, t_{1})\in \mathrm{CC}_{rd}^{1}(I_{x}\times I_{y},\mathbb{R}^{+})\), \(g^{\ast }(k_{1}, r_{1})\in \mathrm{CC}_{rd}^{1}(I_{z}\times I_{w}, \mathbb{R}^{+})\). Suppose that \(F^{\ast }(s_{1}, t_{1})\) and \(G^{\ast }(k_{1}, r_{1})\) are defined as
$$ F^{\ast }(s_{1}, t_{1})= \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}}f^{\ast }(\xi , \eta )\Delta \xi \Delta \eta , G^{\ast }(k_{1},r_{1})= \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}g^{\ast }( \xi , \eta )\Delta \xi \Delta \eta . $$
(11)
Then for \((s_{1}, t_{1})\in I_{x}\times I_{y}\) and \((k_{1}, r_{1})\in I_{z}\times I_{w}\), one gets
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{F^{\ast }(s_{1}, t_{1})G^{\ast }(k_{1}, r_{1})}{q_{1} [ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{{q_{1}-1}}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq C(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl( \sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \bigl[ f^{\ast }(s_{1}, t_{1}) \bigr] ^{p_{1}}\Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl(\sigma (w)-k_{1} \bigr) \bigl( \sigma (z)-r_{1}\bigr) \bigl[ g^{\ast }(k_{1}, r_{1}) \bigr] ^{q_{1}} \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}}, \end{aligned}$$
(12)
where
$$ C(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}} \bigl[ (x-t_{0}) (y-t_{0}) \bigr] ^{\frac{p_{1}-1}{p_{1}}} \bigl[ (w-t_{0}) (z-t_{0}) \bigr] ^{ \frac{q_{1}-1}{q_{1}}}. $$
(13)
Proof
By assumption and applying Hölder’s inequality (8) with respect to \(p_{1}\), \(p_{1}/(p_{1}-1)\) and \(q_{1}\), \(q_{1}/(q_{1}-1)\), respectively, we find that
$$ F^{\ast }(s_{1}, t_{1})\leq \bigl[ (s_{1}-t_{0}) (t_{1}-t_{0}) \bigr] ^{\frac{p_{1}-1}{p_{1}}} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ f^{\ast }(\xi , \eta ) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} $$
(14)
and
$$ G^{\ast }(k_{1}, r_{1})\leq \bigl[ (k_{1}-t_{0}) (r_{1}-t_{0}) \bigr] ^{\frac{q_{1}-1}{q_{1}}} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ g^{\ast }(\xi , \eta ) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. $$
(15)
By multiplying (14) and (15), we get
$$\begin{aligned} F^{\ast }(s_{1}, t_{1})G^{\ast }(k_{1}, r_{1}) \leq & \bigl[ (s_{1}-t_{0}) (t_{1}-t_{0}) \bigr] ^{\frac{p_{1}-1}{p_{1}}} \bigl[ (k_{1}-t_{0}) (r_{1}-t_{0}) \bigr] ^{\frac{q_{1}-1}{q_{1}}} \\ &{}\times \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ f^{ \ast }(\xi , \eta ) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \\ &{}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ g^{ \ast }(\xi , \eta ) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(16)
Applying Young’s inequality on the term \([ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{(p_{1}-1)/p_{1}}\times [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)/q_{1}}\) with \(u= [ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{(p_{1}-1)/p_{1}}\) and \(l= [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)/q_{1}}\), we observe that
$$\begin{aligned} F^{\ast }(s_{1}, t_{1})G^{\ast }(k_{1}, r_{1}) \leq & \biggl( \frac{[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}}{p_{1}}+ \frac{ [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}}{q_{1}} \biggr) \\ &{}\times \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ f^{ \ast }(\xi , \eta ) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \\ &{}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ g^{ \ast }(\xi , \eta ) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}} \\ =& \biggl( \frac{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}}{p_{1}q_{1}} \biggr) \\ &{}\times \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ f^{ \ast }(\xi , \eta ) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \\ &{}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ g^{ \ast }(\xi , \eta ) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(17)
Dividing both sides of (17) by \(q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}\), we obtain
$$\begin{aligned} &\frac{F^{\ast }(s_{1}, t_{1})G^{\ast }(k_{1}, r_{1})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}} \\ &\quad \leq \frac{1}{p_{1}q_{1}} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ f^{\ast }(\xi , \eta ) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ g^{ \ast }(\xi , \eta ) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(18)
Integrating both sides of (18) first with respect to \(r_{1}\) and \(k_{1} \) and then with respect to \(s_{1}\) and \(t_{1}\), respectively, and applying Hölder’s inequality (8) with indices \(p_{1}\), \(p_{1}/(p_{1}-1)\) and \(q_{1}\), \(q_{1}/(q_{1}-1)\), we see that
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{F^{\ast }(s_{1}, t_{1})G^{\ast }(k_{1}, r_{1})}{q_{1} [ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{{q_{1}-1}}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq \frac{1}{p_{1}q_{1}} \bigl[ (x-t_{0}) (y-t_{0}) \bigr] ^{ \frac{p_{1}-1}{p_{1}}} \bigl[ (z-t_{0}) (w-t_{0}) \bigr] ^{\frac{q_{1}-1}{q_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ f^{\ast }(\xi , \eta ) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) \Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ g^{\ast }(\xi , \eta ) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}} \\ &\quad =C(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ f^{\ast }( \xi , \eta ) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) \Delta s_{1} \Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ g^{\ast }(\xi , \eta ) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(19)
Applying Fubini’s theorem on (19), we conclude that
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{F^{\ast }(s_{1}, t_{1})G^{\ast }(k_{1}, r_{1})}{q_{1} [ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{{q_{1}-1}}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq C(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}(x-s_{1}) (y-t_{1}) \bigl[ f^{\ast }(s_{1},t_{1}) \bigr] ^{p_{1}}\Delta s_{1}\Delta t_{1} \biggr) ^{ \frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}(z-k_{1}) (w-r_{1}) \bigl[ g^{\ast }(k_{1}, r_{1}) \bigr] ^{q_{1}}\Delta k_{1} \Delta r_{1} \biggr) ^{\frac{1}{q_{1}}}, \end{aligned}$$
and then, by using the fact that \(\sigma (n)\geq n\), one gets
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{F^{\ast }(s_{1}, t_{1})G^{\ast }(k_{1}, r_{1})}{q_{1} [ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{{q_{1}-1}}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq C(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl( \sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \bigl[ f^{\ast }(s_{1}, t_{1}) \bigr] ^{p_{1}}\Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl(\sigma (z)-r_{1} \bigr) \bigl( \sigma (w)-k_{1}\bigr) \bigl[ g^{\ast }(k_{1}, r_{1}) \bigr] ^{q_{1}} \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}}, \end{aligned}$$
which proves (12). This completes the proof. □
Using the relations (5) and taking \(\mathbb{T}_{1}= \mathbb{T}_{2}=\mathbb{R}\), \(t_{0}=0\) in Theorem 4 leads to the following result.
Corollary 1
Assume that \(f^{\ast }(s_{1}, t_{1})\) and \(g^{\ast }(k_{1}, r_{1})\) are real-valued continuous functions and define
$$ F^{\ast }(s_{1}, t_{1})= \int _{0}^{s_{1}} \int _{0}^{t_{1}}f^{ \ast }(\xi , \eta )\,d\xi \,d\eta ,\qquad G^{\ast }(k_{1}, r_{1})= \int _{0}^{k_{1}} \int _{0}^{r_{1}}g^{\ast }(\xi , \eta )\,d \xi \,d\eta . $$
Then for \((s_{1}, t_{1})\in I_{x}\times I_{y}\) and \((k_{1}, r_{1})\in I_{z}\times I_{w}\), we have
$$\begin{aligned} & \int _{0}^{x} \int _{0}^{y} \biggl( \int _{0}^{z} \int _{0}^{w} \frac{F^{\ast }(s_{1}, t_{1})G^{\ast }(k_{1}, r_{1})}{q_{1}(s_{1}t_{1})^{{p_{1}-1}}+p_{1}(k_{1}r_{1})^{{q_{1}-1}}}\,dk_{1} \,dr_{1} \biggr) \,ds_{1}\,dt_{1} \\ &\quad \leq C^{\ast }(p_{1}, q_{1}) \biggl( \int _{0}^{x} \int _{0}^{y}(x-s_{1}) (y-t_{1}) \bigl[ f^{\ast }(s_{1}, t_{1}) \bigr] ^{p_{1}}\,ds_{1}\,dt_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{0}^{z} \int _{0}^{w}(z-k_{1}) (w-r_{1}) \bigl[ g^{ \ast }(k_{1}, r_{1}) \bigr] ^{q_{1}}\,dk_{1}\,dr_{1} \biggr) ^{ \frac{1}{q_{1}}}, \end{aligned}$$
where
$$ C^{\ast }(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}}(xy)^{ \frac{p_{1}-1}{p_{1}}}(zw)^{\frac{q_{1}-1}{q_{1}}}. $$
By using the relations (5) and letting \(\mathbb{T}_{1}= \mathbb{T}_{2}=\mathbb{Z}\), \(t_{0}=0\) in Theorem 4, we get the following result.
Corollary 2
Assume that
\(\{a_{m_{1}, n_{1}}\}_{0\leq m_{1}, n_{1}\leq N}\)
and
\(\{b_{k_{1}, r_{1}}\}_{0\leq k_{1}, r_{1}\leq N}\)
are two nonnegative sequences of real numbers and define
$$ A_{{m_{1}, n_{1}}}=\sum_{\xi =1}^{m_{1}}\sum _{\eta =1}^{n_{1}}a_{ \xi , \eta },\qquad B_{{k_{1}, r_{1}}}=\sum_{\xi =1}^{k_{1}} \sum _{\eta =1}^{r_{1}}b_{\xi , \eta }. $$
Then
$$\begin{aligned} &\sum_{s_{1}=1}^{m_{1}}\sum _{t_{1}=1}^{n_{1}} \Biggl( \sum _{k_{1}=1}^{z_{1}} \sum_{r_{1}=1}^{w_{1}} \frac{A_{{s_{1}, t_{1}}}B_{{k_{1}, r_{1}}}}{q_{1}(s_{1}t_{1})^{{p_{1}-1}}+p_{1}(k_{1}r_{1})^{{q_{1}-1}}} \Biggr) \\ &\quad \leq C^{\ast \ast }(p_{1}, q_{1}) \Biggl( \sum _{s_{1}=1}^{m_{1}}\sum _{t_{1}=1}^{n_{1}}(m_{1}-s_{1}+1) (n_{1}-t_{1}+1) (a_{s_{1}, t_{1}})^{p_{1}} \Biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \Biggl( \sum_{k_{1}=1}^{z_{1}} \sum_{r_{1}=1}^{w_{1}}(z_{1}-k_{1}+1) (w_{1}-r_{1}+1) (b_{k_{1}, r_{1}})^{q_{1}} \Biggr) ^{\frac{1}{q_{1}}}, \end{aligned}$$
where
$$ C^{\ast \ast }(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}}(m_{1}n_{1})^{ \frac{p_{1}-1}{p_{1}}}(z_{1}w_{1})^{\frac{q_{1}-1}{q_{1}}}. $$
In the following theorems, we give a further generalization of (12) obtained in Theorem 4.
Theorem 5
Let (H1), (H2), and (H4) be satisfied, \(f^{\ast }(s_{1}, t_{1})\in \mathrm{CC}_{rd}^{1}(I_{x}\times I_{y}, \mathbb{R}^{+})\), \(g^{\ast }(k_{1}, r_{1})\in \mathrm{CC}_{rd}^{1}(I_{z}\times I_{w}, \mathbb{R}^{+})\) and \(p^{\ast }(\xi , \eta )\), \(q^{\ast }(\xi , \eta )\) be two positive functions. Suppose that \(F^{\ast }(s_{1}, t_{1})\) and \(G^{\ast }(k_{1}, r_{1})\) are as defined in Theorem 4and let
$$ P^{\ast }(s_{1}, t_{1})= \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}}p^{\ast }(\xi , \eta )\Delta \xi \Delta \eta ,\qquad Q^{\ast }(k_{1},r_{1})= \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}q^{\ast }( \xi , \eta )\Delta \xi \Delta \eta . $$
(20)
Then for \((s_{1}, t_{1})\in I_{x}\times I_{y}\) and \((k_{1}, r_{1})\in I_{z}\times I_{w}\), we have
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))}{q_{1} [ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{{q_{1}-1}}}\Delta k_{1} \Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq D(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl( \sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \biggl( p^{\ast }(s_{1}, t_{1}) \Phi \biggl[ \frac{f^{\ast }(s_{1}, t_{1})}{p^{\ast }(s_{1}, t_{1})} \biggr] \biggr) ^{p_{1}} \Delta s_{1}\Delta t_{1} \biggr) ^{ \frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl(\sigma (z)-k_{1} \bigr) \bigl( \sigma (w)-r_{1}\bigr) \biggl( q^{\ast }(k_{1}, r_{1})\Psi \biggl[ \frac{g^{\ast }(k_{1}, r_{1})}{q^{\ast }(k_{1}, r_{1})} \biggr] \biggr) ^{q_{1}} \Delta k_{1}\Delta r_{1} \biggr) ^{ \frac{1}{q_{1}}}, \end{aligned}$$
(21)
where
$$\begin{aligned} D(p_{1}, q_{1}) =&\frac{1}{p_{1}q_{1}} \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \frac{\Phi (P^{\ast }(s_{1}, t_{1}))}{P^{\ast }(s_{1}, t_{1})} \biggr) ^{ \frac{p_{1}}{p_{1}-1}}\Delta s_{1}\Delta t_{1} \biggr) ^{\frac{p_{1}-1}{p_{1}}} \\ &{}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \frac{\Psi (Q^{\ast }(k_{1}, r_{1}))}{Q^{\ast }(k_{1}, r_{1})} \biggr) ^{\frac{q_{1}}{q_{1}-1}}\Delta k_{1}\Delta r_{1} \biggr) ^{\frac{q_{1}-1}{q_{1}}}. \end{aligned}$$
(22)
Proof
By assumption and using the Jensen’s inequality (9), it is clear that
$$\begin{aligned} \Phi \bigl(F^{\ast }(s_{1},t_{1})\bigr) =&\Phi \biggl( \frac{P^{\ast }(s_{1}, t_{1})\int _{t_{0}}^{s_{1}}\int _{t_{0}}^{t_{1}}p^{\ast }(\xi , \eta ) [ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} ] \Delta \xi \Delta \eta }{\int _{t_{0}}^{s_{1}}\int _{t_{0}}^{t_{1}}p^{\ast }(\xi , \eta )\Delta \xi \Delta \eta } \biggr) \\ \leq &\Phi \bigl(P^{\ast }(s_{1}, t_{1})\bigr)\Phi \biggl( \frac{\int _{t_{0}}^{s_{1}}\int _{t_{0}}^{t_{1}}p^{\ast }(\xi , \eta ) [ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} ] \Delta \xi \Delta \eta }{\int _{t_{0}}^{s_{1}}\int _{t_{0}}^{t_{1}}p^{\ast }(\xi , \eta )\Delta \xi \Delta \eta } \biggr) \\ \leq &\frac{\Phi (P^{\ast }(s_{1}, t_{1}))}{P^{\ast }(s_{1}, t_{1})} \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}}p^{\ast }(\xi , \eta )\Phi \biggl[ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} \biggr] \Delta \xi \Delta \eta . \end{aligned}$$
(23)
Applying Hölder’s inequality (8) with indices \(p_{1}\) and \(p_{1}/(p_{1}-1)\) on the right-hand side of (23), we have
$$\begin{aligned} \Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr) \leq & \bigl[ (s_{1}-t_{0}) (t_{1}-t_{0}) \bigr] ^{\frac{p_{1}-1}{p_{1}}} \frac{\Phi (P^{\ast }(s_{1}, t_{1}))}{P^{\ast }(s_{1}, t_{1})} \\ &{}\times \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \biggl( p^{ \ast }(\xi , \eta ) \Phi \biggl[ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} \biggr] \biggr) ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{ \frac{1}{p_{1}}}. \end{aligned}$$
(24)
Analogously,
$$\begin{aligned} \Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) \leq & \bigl[ (k_{1}-t_{0}) (r_{1}-t_{0}) \bigr] ^{\frac{q_{1}-1}{q_{1}}} \frac{\Psi (Q^{\ast }(k_{1}, r_{1}))}{Q^{\ast }(k_{1}, r_{1})} \\ &{}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \biggl( q^{ \ast }(\xi , \eta ) \Psi \biggl[ \frac{g^{\ast }(\xi , \eta )}{q^{\ast }(\xi , \eta )} \biggr] \biggr) ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{ \frac{1}{q_{1}}}. \end{aligned}$$
(25)
Thus, from (24) and (25), it can be concluded that
$$\begin{aligned} &\Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr)\Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) \\ &\quad \leq \bigl[ (s_{1}-t_{0}) (t_{1}-t_{0}) \bigr] ^{ \frac{p_{1}-1}{p_{1}}} \bigl[ (k_{1}-t_{0}) (r_{1}-t_{0}) \bigr] ^{\frac{q_{1}-1}{q_{1}}} \\ &\qquad {}\times \biggl( \frac{\Phi (P^{\ast }(s_{1}, t_{1}))}{P^{\ast }(s_{1}, t_{1})} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \biggl( p^{\ast }( \xi , \eta )\Phi \biggl[ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} \biggr] \biggr) ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \biggr) \\ &\qquad {}\times \biggl( \frac{\Psi (Q^{\ast }(k_{1}, r_{1}))}{Q^{\ast }(k_{1}, r_{1})} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \biggl( q^{\ast }( \xi , \eta )\Psi \biggl[ \frac{g^{\ast }(\xi , \eta )}{q^{\ast }(\xi , \eta )} \biggr] \biggr) ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}} \biggr) . \end{aligned}$$
(26)
Applying Young’s inequality on the term \([ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{(p_{1}-1)/p_{1}} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)/q_{1}}\), we get
$$\begin{aligned} &\Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr)\Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) \\ &\quad \leq \biggl( \frac{[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}}{p_{1}}+\frac{ [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}}{q_{1}} \biggr) \\ &\qquad {}\times \biggl( \frac{\Phi (P^{\ast }(s_{1}, t_{1}))}{P^{\ast }(s_{1}, t_{1})} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \biggl( p^{\ast }( \xi , \eta )\Phi \biggl[ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} \biggr] \biggr) ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \biggr) \\ &\qquad {}\times \biggl( \frac{\Psi (Q^{\ast }(k_{1}, r_{1}))}{Q^{\ast }(k_{1}, r_{1})} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \biggl( q^{\ast }( \xi , \eta )\Psi \biggl[ \frac{g^{\ast }(\xi , \eta )}{q^{\ast }(\xi , \eta )} \biggr] \biggr) ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}} \biggr) . \end{aligned}$$
(27)
From (27), we observe that
$$\begin{aligned} &\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}} \\ &\quad \leq \frac{1}{p_{1}q_{1}} \biggl( \frac{\Phi (P^{\ast }(s_{1}, t_{1}))}{P^{\ast }(s_{1}, t_{1})} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \biggl( p^{\ast }(\xi , \eta ) \Phi \biggl[ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} \biggr] \biggr) ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{ \frac{1}{p_{1}}} \biggr) \\ &\qquad {}\times \biggl( \frac{\Psi (Q^{\ast }(k_{1}, r_{1}))}{Q^{\ast }(k_{1}, r_{1})} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \biggl( q^{\ast }( \xi , \eta )\Psi \biggl[ \frac{g^{\ast }(\xi , \eta )}{q^{\ast }(\xi , \eta )} \biggr] \biggr) ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}} \biggr) . \end{aligned}$$
(28)
Integrating both sides of (28) first with respect to \(r_{1}\) and \(k_{1}\) and then with respect to \(s_{1}\) and \(t_{1}\), respectively, we get
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq \frac{1}{p_{1}q_{1}} \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \frac{\Phi (P^{\ast }(s_{1}, t_{1}))}{P^{\ast }(s_{1}, t_{1})} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \biggl( p^{\ast }( \xi , \eta )\Phi \biggl[ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} \biggr] \biggr) ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{ \frac{1}{p_{1}}}\Delta s_{1}\Delta t_{1} \biggr) \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \frac{\Psi (Q^{\ast }(k_{1},r_{1}))}{Q^{\ast }(k_{1}, r_{1})} \\ &\qquad {}\times\biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \biggl( q^{\ast }(\xi , \eta ) \Psi \biggl[ \frac{g^{\ast }(\xi , \eta )}{q^{\ast }(\xi , \eta )} \biggr] \biggr) ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{ \frac{1}{q_{1}}}\Delta k_{1}\Delta r_{1} \biggr) . \end{aligned}$$
(29)
Using Hölder’s inequality (8) again with respect to \(p_{1}\), \(p_{1}/(p_{1}-1)\) and \(q_{1}\), \(q_{1}/(q_{1}-1)\), respectively, on (29), we may write
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq \frac{1}{p_{1}q_{1}} \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \frac{\Phi (P^{\ast }(s_{1}, t_{1}))}{P^{\ast }(s_{1}, t_{1})} \biggr) ^{\frac{p_{1}}{p_{1}-1}}\Delta s_{1}\Delta t_{1} \biggr) ^{ \frac{p_{1}-1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \frac{\Psi (Q^{\ast }(k_{1}, r_{1}))}{Q^{\ast }(k_{1}, r_{1})} \biggr) ^{\frac{q_{1}}{q_{1}-1}}\Delta k_{1}\Delta r_{1} \biggr) ^{\frac{q_{1}-1}{q_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \biggl( p^{\ast }(\xi , \eta ) \Phi \biggl[ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} \biggr] \biggr) ^{p_{1}}\Delta \xi \Delta \eta \biggr) \Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \biggl( q^{\ast }(\xi , \eta ) \Psi \biggl[ \frac{g^{\ast }(\xi , \eta )}{q^{\ast }(\xi , \eta )} \biggr] \biggr) ^{q_{1}}\Delta \xi \Delta \eta \biggr) \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}} \\ &\quad =D(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \biggl( p^{\ast }( \xi , \eta )\Phi \biggl[ \frac{f^{\ast }(\xi , \eta )}{p^{\ast }(\xi , \eta )} \biggr] \biggr) ^{p_{1}}\Delta \xi \Delta \eta \biggr) \Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \biggl( q^{\ast }(\xi , \eta ) \Psi \biggl[ \frac{g^{\ast }(\xi , \eta )}{q^{\ast }(\xi , \eta )} \biggr] \biggr) ^{q_{1}}\Delta \xi \Delta \eta \biggr) \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
Applying Fubini’s theorem and using the fact that \(\sigma (n)\geq n\), we get
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq D(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}(x-s_{1}) (y-t_{1}) \biggl( p^{\ast }(s_{1},t_{1}) \Phi \biggl[ \frac{f^{\ast }(s_{1}, t_{1})}{p^{\ast }(s_{1}, t_{1})} \biggr] \biggr) ^{p_{1}}\Delta s_{1}\Delta t_{1} \biggr) ^{ \frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}(z-k_{1}) (w-r_{1}) \biggl( q^{\ast }(k_{1}, r_{1}) \Psi \biggl[ \frac{g^{\ast }(k_{1}, r_{1})}{q^{\ast }(k_{1}, r_{1})} \biggr] \biggr) ^{q_{1}} \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}} \\ &\quad \leq D(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl( \sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \biggl( p^{\ast }(s_{1}, t_{1}) \Phi \biggl[ \frac{f^{\ast }(s_{1}, t_{1})}{p^{\ast }(s_{1}, t_{1})} \biggr] \biggr) ^{p_{1}} \Delta s_{1}\Delta t_{1} \biggr) ^{ \frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl(\sigma (z)-k_{1} \bigr) \bigl( \sigma (w)-r_{1}\bigr) \biggl( q^{\ast }(k_{1}, r_{1})\Psi \biggl[ \frac{g^{\ast }(k_{1}, r_{1})}{q^{\ast }(k_{1}, r_{1})} \biggr] \biggr) ^{q_{1}} \Delta k_{1}\Delta r_{1} \biggr) ^{ \frac{1}{q_{1}}}, \end{aligned}$$
which is (21). This completes the proof. □
By using the relations (5) and taking \(\mathbb{T}_{1}=\mathbb{T}_{2}=\mathbb{R}\), \(t_{0}=0\) in Theorem 5, we get the following result.
Corollary 3
Assume that \(f^{\ast }(s_{1}, t_{1})\), \(g^{\ast }(k_{1}, r_{1})\) are real-valued continuous functions, \(p^{\ast }(s_{1}, t_{1})\), \(q^{\ast }(k_{1}, r_{1})\) are two positive functions, and define
$$\begin{aligned} &F^{\ast }(s_{1}, t_{1}) = \int _{0}^{s_{1}} \int _{0}^{t_{1}}f^{ \ast }(\xi , \eta )\,d\xi \,d\eta ,\qquad G^{\ast }(k_{1}, r_{1})= \int _{0}^{k_{1}} \int _{0}^{r_{1}}g^{\ast }(\xi , \eta )\,d \xi \,d\eta , \\ &P^{\ast }(s_{1}, t_{1}) = \int _{0}^{s_{1}} \int _{0}^{t_{1}}p^{ \ast }(\xi , \eta )\,d\xi \,d\eta ,\qquad Q^{\ast }(k_{1}, r_{1})= \int _{0}^{k_{1}} \int _{0}^{r_{1}}q^{\ast }(\xi , \eta )\,d \xi \,d\eta . \end{aligned}$$
Then for \((s_{1}, t_{1})\in I_{x}\times I_{y}\) and \((k_{1}, r_{1})\in I_{z}\times I_{w}\), we have
$$\begin{aligned} & \int _{0}^{x} \int _{0}^{y} \biggl( \int _{0}^{z} \int _{0}^{w} \frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))}{q_{1}(s_{1}t_{1})^{{p_{1}-1}}+p_{1}(k_{1}r_{1})^{{q_{1}-1}}}\,dk_{1} \,dr_{1} \biggr) \,ds_{1}\,dt_{1} \\ &\quad \leq D^{\ast }(p_{1}, q_{1}) \biggl( \int _{0}^{x} \int _{0}^{y}(x-s_{1}) (y-t_{1}) \biggl( p^{\ast }(s_{1}, t_{1}) \Phi \biggl[ \frac{f^{\ast }(s_{1}, t_{1})}{p^{\ast }(s_{1},t_{1})} \biggr] \biggr) ^{p_{1}}\,ds_{1} \,dt_{1} \biggr) ^{ \frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{0}^{z} \int _{0}^{w}(z-k_{1}) (w-r_{1}) \biggl( q^{ \ast }(k_{1}, r_{1}) \Psi \biggl[ \frac{g^{\ast }(k_{1}, r_{1})}{q^{\ast }(k_{1}, r_{1})} \biggr] \biggr) ^{q_{1}}\,dk_{1} \,dr_{1} \biggr) ^{\frac{1}{q_{1}}}, \end{aligned}$$
where
$$\begin{aligned} D^{\ast }(p_{1}, q_{1}) &=\frac{1}{p_{1}q_{1}} \biggl( \int _{0}^{x} \int _{0}^{y} \biggl( \frac{\Phi (P^{\ast }(s_{1}, t_{1}))}{P^{\ast }(s_{1}, t_{1})} \biggr) ^{\frac{p_{1}}{p_{1}-1}}\,ds_{1}\,dt_{1} \biggr) ^{\frac{p_{1}-1}{p_{1}}} \\ &\quad {}\times \biggl( \int _{0}^{z} \int _{0}^{w} \biggl( \frac{\Psi (Q^{\ast }(k_{1},r_{1}))}{Q^{\ast }(k_{1}, r_{1})} \biggr) ^{ \frac{q_{1}}{q_{1}-1}}\,dk_{1}\,dr_{1} \biggr) ^{\frac{q_{1}-1}{q_{1}}}. \end{aligned}$$
By using the relations (5) and taking \(\mathbb{T}_{1}= \mathbb{T}_{2}=\mathbb{Z}\), \(t_{0}=0\) in Theorem 5, we get the following result.
Corollary 4
Assume that \(\{a_{m_{1}, n_{1}}\}_{0\leq m_{1}, n_{1}\leq N}\), \(\{b_{k_{1}, r_{1}}\}_{0\leq k_{1}, r_{1}\leq N}\) are two nonnegative sequences of real numbers, \(\{p_{m_{1}, n_{1}}\}_{{0\leq m_{1}, n_{1}\leq N}}\), \(\{q_{k_{1}, r_{1}}\}_{0\leq k_{1}, r_{1}\leq N}\) are positive sequences, and define
$$\begin{aligned} &A_{{m_{1}, n_{1}}} =\sum_{\xi =1}^{m_{1}}\sum _{\eta =1}^{n_{1}}a_{ \xi , \eta },\qquad B_{{k_{1}, r_{1}}}=\sum_{\xi =1}^{k_{1}}\sum _{\eta =1}^{r_{1}}b_{\xi , \eta }, \\ &P_{m_{1}, n_{1}} =\sum_{\xi =1}^{m_{1}}\sum _{\eta =1}^{n_{1}}p_{ \xi , \eta },\qquad Q_{{k_{1}, r_{1}}}=\sum_{\xi =1}^{k_{1}} \sum _{\eta =1}^{r_{1}}q_{\xi , \eta }. \end{aligned}$$
Then
$$\begin{aligned} &\sum_{s_{1}=1}^{m_{1}}\sum _{t_{1}=1}^{n_{1}} \Biggl( \sum _{k_{1}=1}^{z_{1}} \sum_{r_{1}=1}^{w_{1}} \frac{\Phi (A_{{s_{1}, t_{1}}})\Psi (B_{k_{1}, r_{1}})}{q_{1}(s_{1}t_{1})^{{p_{1}-1}}+p_{1}(k_{1}r_{1})^{{q_{1}-1}}} \Biggr) \\ &\quad \leq D^{\ast \ast }(p_{1}, q_{1}) \Biggl( \sum _{s_{1}=1}^{m_{1}} \sum _{t_{1}=1}^{n_{1}}(m_{1}-s_{1}+1) (n_{1}-t_{1}+1) \biggl( p_{s_{1}, t_{1}}\Phi \biggl[ \frac{a_{s_{1}, t_{1}}}{p_{s_{1}, t_{1}}} \biggr] \biggr) ^{p_{1}} \Biggr) ^{ \frac{1}{p_{1}}} \\ &\qquad {}\times \Biggl( \sum_{k_{1}=1}^{z_{1}} \sum_{r_{1}=1}^{w_{1}}(z_{1}-k_{1}+1) (w_{1}-r_{1}+1) \biggl( q_{k_{1}, r_{1}}\Psi \biggl[ \frac{b_{{k_{1}, r_{1}}}}{q_{k_{1}, r_{1}}} \biggr] \biggr) ^{q_{1}} \Biggr) ^{ \frac{1}{q_{1}}}, \end{aligned}$$
where
$$ D^{\ast \ast }(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}} \Biggl( \sum_{s_{1}=1}^{m_{1}} \sum _{t_{1}=1}^{n_{1}} \biggl( \frac{\Phi (P_{s_{1},t_{1}})}{P_{s_{1}, t_{1}}} \biggr) ^{ \frac{p_{1}}{p_{1}-1}} \Biggr) ^{\frac{p_{1}-1}{p_{1}}} \Biggl( \sum _{k_{1}=1}^{z_{1}} \sum_{r_{1}=1}^{w_{1}} \biggl( \frac{\Psi (Q_{k_{1},r_{1}})}{Q_{k_{1}, r_{1}}} \biggr) ^{ \frac{q_{1}}{q_{1}-1}} \Biggr) ^{\frac{q_{1}-1}{q_{1}}}. $$
Remark 1
By applying (10) on (12) in Theorem 4 and (21) in Theorem 5, respectively, we get the following inequalities:
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{F^{\ast }(s_{1}, t_{1})G^{\ast }(k_{1}, r_{1})}{q_{1} [ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{{q_{1}-1}}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq C(p_{1}, q_{1}) \biggl\{ \frac{1}{p_{1}} \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl(\sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \bigl[ f^{\ast }(s_{1}, t_{1}) \bigr] ^{p_{1}}\Delta s_{1}\Delta t_{1} \biggr) \\ &\qquad {} +\frac{1}{q_{1}} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl( \sigma (z)-k_{1} \bigr) \bigl(\sigma (w)-r_{1}\bigr) \bigl[ g^{\ast }(k_{1}, r_{1}) \bigr] ^{q_{1}}\Delta k_{1}\Delta r_{1} \biggr) \biggr\} , \end{aligned}$$
(30)
where \(C(p_{1}, q_{1})\) is defined in (13), and
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{(p_{1}-1)}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq D(p_{1}, q_{1}) \biggl\{ \frac{1}{p_{1}} \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl(\sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \biggl( p^{\ast }(s_{1}, t_{1})\Phi \biggl[ \frac{f^{\ast }(s_{1}, t_{1})}{p^{\ast }(s_{1}, t_{1})} \biggr] \biggr) ^{p_{1}} \Delta s_{1}\Delta t_{1} \biggr) \\ &\qquad {} +\frac{1}{q_{1}} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl( \sigma (z)-k_{1} \bigr) \bigl(\sigma (w)-r_{1}\bigr) \\ &\qquad {}\times \biggl( q^{\ast }(k_{1}, r_{1}) \Psi \biggl[ \frac{g^{\ast }(k_{1}, r_{1})}{q^{\ast }(k_{1}, r_{1})} \biggr] \biggr) ^{q_{1}} \Delta k_{1}\Delta r_{1} \biggr) \biggr\} , \end{aligned}$$
(31)
where \(D(p_{1}, q_{1})\) is defined in (22).
The following theorems present slight variants of (21) in Theorem 5.
Theorem 6
Let (H1), (H2), and (H4) be satisfied and \(f^{\ast }(s_{1}, t_{1})\in \mathrm{CC}_{rd}^{1}(I_{x}\times I_{y}, \mathbb{R}^{+})\), \(g^{\ast }(k_{1}, r_{1})\in \mathrm{CC}_{rd}^{1}(I_{z}\times I_{w}, \mathbb{R}^{+})\). Define
$$\begin{aligned} &F^{\ast }(s_{1}, t_{1}) =\frac{1}{(s_{1}-t_{0})(t_{1}-t_{0})} \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}}f^{\ast }(\xi , \eta ) \Delta \xi \Delta \eta , \\ &G^{\ast }(k_{1}, r_{1}) =\frac{1}{(k_{1}-t_{0})(r_{1}-t_{0})} \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}g^{\ast }(\xi , \eta ) \Delta \xi \Delta \eta . \end{aligned}$$
(32)
Then for \((s_{1}, t_{1})\in I_{x}\times I_{y}\) and \((k_{1}, r_{1})\in I_{z}\times I_{w}\), one gets
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))(s_{1}-t_{0})(t_{1}-t_{0})(k_{1}-t_{0})(r_{1}-t_{0})}{q_{1} [ (s-t_{0})(t-t_{0}) ] ^{{p_{1}-1}}+p_{1} [ (k-t_{0})(r-t_{0}) ] ^{{q_{1}-1}}} \\ &\qquad {}\times\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq K(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl( \sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \bigl[ \Phi \bigl(f^{\ast }(s_{1}, t_{1})\bigr) \bigr] ^{p_{1}}\Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl(\sigma (w)-k_{1} \bigr) \bigl( \sigma (z)-r_{1}\bigr) \bigl[ \Psi \bigl(g^{\ast }(k_{1}, r_{1})\bigr) \bigr] ^{q_{1}} \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}}, \end{aligned}$$
(33)
where
$$ K(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}}\bigl[(s_{1}-t_{0}) (t_{1}-t_{0})\bigr]^{\frac{p_{1}-1}{p_{1}}}\bigl[(k_{1}-t_{0}) (r_{1}-t_{0})\bigr]^{ \frac{q_{1}-1}{q_{1}}}. $$
(34)
Proof
By assumption and using the Jensen’s inequality (9), we obtain
$$\begin{aligned} \Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr) =&\Phi \biggl( \frac{1}{(s_{1}-t_{0})(t_{1}-t_{0})} \int _{t}^{s_{1}} \int _{t_{0}}^{t_{1}}f^{ \ast }(\xi , \eta )\Delta \xi \Delta \eta \biggr) \\ \leq &\frac{1}{(s_{1}-t_{0})(t_{1}-t_{0})} \int _{t}^{s_{1}} \int _{t_{0}}^{t_{1}}\Phi \bigl( f^{\ast }(\xi , \eta ) \bigr) \Delta \xi \Delta \eta . \end{aligned}$$
(35)
Similarly,
$$\begin{aligned} \Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) =&\Psi \biggl( \frac{1}{(k_{1}-t_{0})(r_{1}-t_{0})} \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}g^{ \ast }(\xi , \eta )\Delta \xi \Delta \eta \biggr) \\ \leq &\frac{1}{(k_{1}-t_{0})(r_{1}-t_{0})} \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}\Psi \bigl( g^{\ast }(\xi , \eta ) \bigr) \Delta \xi \Delta \eta . \end{aligned}$$
(36)
By multiplying (35) and (36), we get
$$\begin{aligned} &\Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr)\Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) \\ &\quad \leq \frac{1}{(s_{1}-t_{0})(t_{1}-t_{0})(k_{1}-t_{0})(r_{1}-t_{0})} \\ &\qquad {}\times \biggl( \int _{t}^{s_{1}} \int _{t_{0}}^{t_{1}}\Phi \bigl( f^{ \ast }(\xi , \eta ) \bigr) \Delta \xi \Delta \eta \biggr) \\ &\qquad {}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}\Psi \bigl( g^{\ast }(\xi , \eta ) \bigr) \Delta \xi \Delta \eta \biggr) . \end{aligned}$$
This implies that
$$\begin{aligned} &\Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr)\Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) (s_{1}-t_{0}) (t_{1}-t_{0}) (k_{1}-t_{0}) (r_{1}-t_{0}) \\ &\quad \leq \biggl( \int _{t}^{s_{1}} \int _{t_{0}}^{t_{1}}\Phi \bigl( f^{ \ast }(\xi ,\eta ) \bigr) \Delta \xi \Delta \eta \biggr) \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}\Psi \bigl( g^{\ast }(\xi , \eta ) \bigr) \Delta \xi \Delta \eta \biggr) . \end{aligned}$$
(37)
By Hölder’s inequality (8), we find
$$\begin{aligned} &\Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr)\Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) (s_{1}-t_{0}) (t_{1}-t_{0}) (k_{1}-t_{0}) (r_{1}-t_{0}) \\ &\quad \leq \bigl[ (s_{1}-t_{0}) (t_{1}-t_{0}) \bigr] ^{ \frac{p_{1}-1}{p_{1}}} \bigl[ (k_{1}-t_{0}) (r_{1}-t_{0}) \bigr] ^{\frac{q_{1}-1}{q_{1}}} \\ &\qquad {}\times \biggl( \int _{t}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ \Phi \bigl(f^{ \ast }( \xi , \eta )\bigr) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ \Psi \bigl(g^{\ast }( \xi , \eta )\bigr) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
Applying Young’s inequality on the term \([ (s_{1}-t_{0})(t_{1}-t_{0}) ] ^{(p_{1}-1)/p_{1}} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{(q_{1}-1)/q_{1}}\), we get
$$\begin{aligned} &\Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr)\Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) (s_{1}-t_{0}) (t_{1}-t_{0}) (k_{1}-t_{0}) (r_{1}-t_{0}) \\ &\quad \leq \biggl( \frac{[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}}{p_{1}}+ \frac{ [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}}{q_{1}} \biggr) \\ &\qquad {}\times \biggl( \int _{t}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ \Phi \bigl(f^{ \ast }( \xi , \eta )\bigr) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ \Psi \bigl(g^{\ast }( \xi , \eta )\bigr) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
This implies that
$$\begin{aligned} &\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))(s_{1}-t_{0})(t_{1}-t_{0})(k_{1}-t_{0})(r_{1}-t_{0})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}} \\ &\quad \leq \frac{1}{p_{1}q_{1}} \biggl( \int _{t}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ \Phi \bigl(f^{\ast }( \xi , \eta )\bigr) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ \Psi \bigl(g^{\ast }( \xi , \eta )\bigr) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(38)
Integrating both sides of (28) first with respect to \(r_{1}\) and \(k_{1}\) and then with respect to \(s_{1}\) and \(t_{1}\), respectively, and applying Hölder’s inequality (8) with indices \(p_{1}\), \(p_{1}/(p_{1}-1)\) and \(q_{1}\), \(q_{1}/(q_{1}-1)\), we get
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))(s_{1}-t_{0})(t_{1}-t_{0})(k_{1}-t_{0})(r_{1}-t_{0})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}} \\ &\qquad {}\times\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq \frac{1}{p_{1}q_{1}} \bigl[ (x-t_{0}) (y-t_{0}) \bigr] ^{ \frac{p_{1}-1}{p_{1}}} \bigl[ (z-t_{0}) (w-t_{0}) \bigr] ^{\frac{q_{1}-1}{q_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ \Phi \bigl(f^{\ast }( \xi , \eta )\bigr) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) \Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ \Psi \bigl(g^{\ast }( \xi , \eta )\bigr) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) \Delta k_{1} \Delta r_{1} \biggr) ^{\frac{1}{q_{1}}} \\ &\quad =K(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ \Phi \bigl(f^{\ast }( \xi , \eta )\bigr) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) \Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ \Psi \bigl(g^{\ast }( \xi , \eta )\bigr) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) \Delta k_{1} \Delta r_{1} \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(39)
Applying Fubini’s theorem and using the fact that \(\sigma (n)\geq n\), we get
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))(s_{1}-t_{0})(t_{1}-t_{0})(k_{1}-t_{0})(r_{1}-t_{0})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}} \\ &\qquad {}\times\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq K(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl( \sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \bigl[ \Phi \bigl(f^{\ast }(s_{1}, t_{1})\bigr) \bigr] ^{p_{1}}\Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl(\sigma (z)-k_{1} \bigr) \bigl( \sigma (w)-r_{1}\bigr) \bigl[ \Psi \bigl(g^{\ast }(k_{1}, r_{1})\bigr) \bigr] ^{q_{1}} \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}}, \end{aligned}$$
which is (33). This completes the proof. □
By using the relations (5) and taking \(\mathbb{T}_{1}= \mathbb{T}_{2}=\mathbb{R}\), \(t_{0}=0\) in Theorem 6, we get the following result.
Corollary 5
Assume that \(f^{\ast }(s_{1}, t_{1})\), \(g^{\ast }(k_{1}, r_{1})\) are real-valued continuous functions and define
$$ F^{\ast }(s_{1}, t_{1})=\frac{1}{s_{1}t_{1}} \int _{0}^{s_{1}} \int _{0}^{t_{1}}f^{\ast }(\xi , \eta )\,d\xi \,d\eta ,\qquad G^{ \ast }(k_{1}, r_{1})=\frac{1}{k_{1}r_{1}} \int _{0}^{k_{1}} \int _{0}^{r_{1}}g^{\ast }(\xi , \eta )\,d\xi \,d\eta . $$
Then for \((s_{1}, t_{1})\in I_{x}\times I_{y}\) and \((k_{1}, r_{1})\in I_{z}\times I_{w}\), we have
$$\begin{aligned} & \int _{0}^{x} \int _{0}^{y} \biggl( \int _{0}^{z} \int _{0}^{w} \frac{(s_{1}t_{1})(k_{1}r_{1})\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))}{q_{1}(s_{1}t_{1})^{{p_{1}-1}}+p_{1}(kr)^{{q-1}}}\,dk_{1} \,dr_{1} \biggr) \,ds_{1}\,dt_{1} \\ &\quad \leq K^{\ast }(p_{1}, q_{1}) \biggl( \int _{0}^{x} \int _{0}^{y}(x-s_{1}) (y-t_{1}) \bigl[ \Phi \bigl(f^{\ast }(s_{1}, t_{1})\bigr) \bigr] ^{p_{1}}\,ds_{1} \,dt_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{0}^{z} \int _{0}^{w}(z-k_{1}) (w-r_{1}) \bigl[ \Psi \bigl(g^{\ast }(k_{1}, r_{1})\bigr) \bigr] ^{q_{1}}\,dk_{1} \,dr_{1} \biggr) ^{\frac{1}{q_{1}}}, \end{aligned}$$
where
$$ K^{\ast }(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}}(xy)^{ \frac{p_{1}-1}{p_{1}}}(zw)^{\frac{q_{1}-1}{q_{1}}}. $$
By using the relations (5) and taking \(\mathbb{T}_{1}= \mathbb{T}_{2}=\mathbb{Z}\), \(t_{0}=0\) in Theorem 6, we get the following result.
Corollary 6
Assume that \(\{a_{m_{1}, n_{1}}\}_{0\leq m_{1}, n_{1}\leq N}\), \(\{b_{k_{1}, r_{1}}\}_{0\leq k_{1}, r_{1}\leq N}\) are two nonnegative sequences of real numbers and define
$$ A_{{m_{1}, n_{1}}}=\frac{1}{m_{1}n_{1}}\sum_{\xi =1}^{m_{1}} \sum_{\eta =1}^{n_{1}}a_{\xi , \eta },\qquad B_{{k_{1},r_{1}}}=\frac{1}{k_{1}r_{1}}\sum_{\xi =1}^{k_{1}} \sum_{\eta =1}^{r_{1}}b_{ \xi , \eta }. $$
Then
$$\begin{aligned} &\sum_{s_{1}=1}^{m_{1}}\sum _{t_{1}=1}^{n_{1}} \Biggl( \sum _{k_{1}=1}^{z_{1}} \sum_{r_{1}=1}^{w_{1}} \frac{(s_{1}t_{1})(k_{1}r_{1})\Phi (A_{{s_{1}, t_{1}}})\Psi (B_{k_{1}, r_{1}})}{q_{1}(s_{1}t_{1})^{{p_{1}-1}}+p_{1}(k_{1}r_{1})^{{q_{1}-1}}} \Biggr) \\ &\quad \leq K^{\ast \ast }(p_{1}, q_{1}) \Biggl\{ \sum _{s_{1}=1}^{m_{1}} \sum _{t_{1}=1}^{n_{1}}(m_{1}-s_{1}+1) (n_{1}-t_{1}+1) \bigl(\Phi (a_{s_{1}, t_{1}}) \bigr)^{p_{1}} \Biggr\} ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \Biggl\{ \sum_{k_{1}=1}^{z_{1}} \sum_{r_{1}=1}^{w_{1}}(z_{1}-k_{1}+1) (w_{1}-r_{1}+1) \bigl(\Psi (b_{{k_{1}, r_{1}}}) \bigr)^{q_{1}} \Biggr\} ^{\frac{1}{q_{1}}}, \end{aligned}$$
where
$$ K^{\ast \ast }(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}}(m_{1}n_{1})^{ \frac{p_{1}-1}{p_{1}}}(z_{1}w_{1})^{\frac{q_{1}-1}{q_{1}}}. $$
Theorem 7
Let (H1), (H2), and (H4) be satisfied, \(f^{\ast }(s_{1}, t_{1})\in \mathrm{CC}_{rd}^{1}(I_{x}\times I_{y}, \mathbb{R}^{+})\), \(g^{\ast }(k_{1}, r_{1})\in \mathrm{CC}_{rd}^{1}(I_{z}\times I_{w}, \mathbb{R}^{+})\), and \(p^{\ast }(\xi , \eta )\), \(q^{\ast }(\xi , \eta ) \) be two positive functions. Suppose that \(P^{\ast }\) and \(Q^{\ast } \) are as defined in Theorem 5and let
$$\begin{aligned} &F^{\ast }(s_{1}, t_{1}) =\frac{1}{P^{\ast }(s_{1}, t_{1})} \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}}p^{\ast }(\xi , \eta )f^{ \ast }(\xi , \eta )\Delta \xi \Delta \eta , \\ &G^{\ast }(k_{1}, r_{1}) =\frac{1}{Q^{\ast }(k_{1}, r_{1})} \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}q^{\ast }(\xi , \eta )g^{ \ast }(\xi , \eta )\Delta \xi \Delta \eta . \end{aligned}$$
(40)
Then for \((s_{1}, t_{1})\in I_{x}\times I_{y}\) and \((k_{1}, r_{1})\in I_{z}\times I_{w}\), we have
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))P^{\ast }(s_{1}, t_{1})Q^{\ast }(k_{1}, r_{1})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq H(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl( \sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \bigl[ P^{\ast }(s_{1}, t_{1}) \Phi \bigl(f^{\ast }(s_{1}, t_{1}) \bigr) \bigr] ^{p_{1}}\Delta s_{1} \Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl(\sigma (z)-k_{1} \bigr) \bigl( \sigma (w)-r_{1}\bigr) \bigl[ Q^{\ast }(k_{1}, r_{1})\Psi \bigl(g^{\ast }(k_{1}, r_{1}) \bigr) \bigr] ^{q_{1}}\Delta k_{1}\Delta r_{1} \biggr) ^{ \frac{1}{q_{1}}}, \end{aligned}$$
(41)
where
$$ H(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}}\bigl[(s_{1}-t_{0}) (t_{1}-t_{0})\bigr]^{\frac{p_{1}-1}{p_{1}}}\bigl[(k_{1}-t_{0}) (r_{1}-t_{0})\bigr]^{ \frac{q_{1}-1}{q_{1}}}. $$
(42)
Proof
By assumption and using the Jensen’s inequality (9), it follows that
$$\begin{aligned} \Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr) =&\Phi \biggl( \frac{1}{P^{\ast }(s_{1}, t_{1})} \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}}p^{ \ast }(\xi , \eta )f^{\ast }(\xi , \eta )\Delta \xi \Delta \eta \biggr) \\ \leq &\frac{1}{P^{\ast }(s_{1}, t_{1})} \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}}p^{\ast }(\xi , \eta )\Phi \bigl(f^{\ast }(\xi , \eta )\bigr)\Delta \xi \Delta \eta \end{aligned}$$
(43)
and
$$\begin{aligned} \Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) =&\Psi \biggl( \frac{1}{Q^{\ast }(k_{1}, r_{1})} \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}q^{ \ast }(\xi , \eta )g^{\ast }(\xi , \eta )\Delta \xi \Delta \eta \biggr) \\ \leq &\frac{1}{Q^{\ast }(k_{1}, r_{1})} \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}}q^{\ast }(\xi , \eta )\Psi \bigl(g^{\ast }(\xi , \eta )\bigr)\Delta \xi \Delta \eta . \end{aligned}$$
(44)
From (43) and (44) and using Hölder’s inequality (8) with \(p_{1}\), \(p_{1}/(p_{1}-1)\) and \(q_{1}\), \(q_{1}/(q_{1}-1)\), respectively, we get
$$\begin{aligned} \Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr) \leq & \frac{1}{P^{\ast }(s_{1}, t_{1})} \bigl[ (s_{1}-t_{0}) (t_{1}-t_{0}) \bigr] ^{ \frac{p_{1}-1}{p_{1}}} \\ &{}\times \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ p^{ \ast }(\xi , \eta ) \Phi \bigl(f^{\ast }(\xi , \eta )\bigr) \bigr] ^{p_{1}} \Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \end{aligned}$$
(45)
and
$$\begin{aligned} \Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr) \leq & \frac{1}{Q^{\ast }(k_{1}, r_{1})} \bigl[ (k_{1}-t_{0}) (r_{1}-t_{0}) \bigr] ^{ \frac{q_{1}-1}{q_{1}}} \\ &{}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ q^{ \ast }(\xi , \eta ) \Psi \bigl(g^{\ast }(\xi , \eta )\bigr) \bigr] ^{q_{1}} \Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(46)
From (45) and (46) and using the elementary inequality (10), we get
$$\begin{aligned} &\Phi \bigl(F^{\ast }(s_{1}, t_{1})\bigr)\Psi \bigl(G^{\ast }(k_{1}, r_{1})\bigr)P^{\ast }(s_{1}, t_{1})Q^{\ast }(k_{1}, r_{1}) \\ &\quad \leq \biggl( \frac{[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}}{p_{1}}+ \frac{ [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}}{q_{1}} \biggr) \\ &\qquad {}\times \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ p^{ \ast }(\xi , \eta ) \Phi \bigl(f^{\ast }(\xi , \eta )\bigr) \bigr] ^{p_{1}} \Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ q^{ \ast }(\xi , \eta ) \Psi \bigl(g^{\ast }(\xi , \eta )\bigr) \bigr] ^{q_{1}} \Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(47)
This implies that
$$\begin{aligned} &\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))P^{\ast }(s_{1}, t_{1})Q^{\ast }(k_{1}, r_{1})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}} \\ &\quad \leq \frac{1}{p_{1}q_{1}} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ p^{\ast }(\xi , \eta ) \Phi \bigl(f^{\ast }(\xi , \eta )\bigr) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ q^{ \ast }(\xi , \eta ) \Psi \bigl(g^{\ast }(\xi , \eta )\bigr) \bigr] ^{q_{1}} \Delta \xi \Delta \eta \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(48)
Integrating both sides of (48) with respect to \(r_{1}\) and \(k_{1}\) and then with respect to \(s_{1}\) and \(t_{1}\), respectively, and applying Hölder’s inequality (8) with indices \(p_{1}\), \(p_{1}/(p_{1}-1)\) and \(q_{1}\), \(q_{1}/(q_{1}-1)\), we see that
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))P^{\ast }(s_{1}, t_{1})Q^{\ast }(k_{1}, r_{1})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq \frac{1}{p_{1}q_{1}} \bigl[ (x-t_{0}) (y-t_{0}) \bigr] ^{ \frac{p_{1}-1}{p_{1}}} \bigl[ (z-t_{0}) (w-t_{0}) \bigr] ^{\frac{q_{1}-1}{q_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ p^{\ast }(\xi , \eta ) \Phi \bigl(f^{ \ast }(\xi , \eta )\bigr) \bigr] ^{p_{1}}\Delta \xi \Delta \eta \biggr) \Delta s_{1}\Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ q^{\ast }(\xi , \eta ) \Psi \bigl(g^{ \ast }(\xi , \eta )\bigr) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}} \\ &\quad =H(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{s_{1}} \int _{t_{0}}^{t_{1}} \bigl[ p^{\ast }( \xi , \eta ) \Phi \bigl(f^{\ast }(\xi , \eta )\bigr) \bigr] ^{p_{1}} \Delta \xi \Delta \eta \biggr) \Delta s_{1}\Delta t_{1} \biggr) ^{ \frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w} \biggl( \int _{t_{0}}^{k_{1}} \int _{t_{0}}^{r_{1}} \bigl[ q^{\ast }(\xi , \eta ) \Psi \bigl(g^{ \ast }(\xi , \eta )\bigr) \bigr] ^{q_{1}}\Delta \xi \Delta \eta \biggr) \Delta k_{1}\Delta r_{1} \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
(49)
Applying Fubini’s theorem and using the fact that \(\sigma (n)\geq n\), we get
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))P^{\ast }(s_{1}, t_{1})Q^{\ast }(k_{1}, r_{1})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq H(p_{1}, q_{1}) \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl( \sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \bigl[ p^{\ast }(s_{1}, t_{1}) \Phi \bigl(f^{\ast }(s_{1}, t_{1}) \bigr) \bigr] ^{p_{1}}\Delta s_{1} \Delta t_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl(\sigma (z)-k_{1} \bigr) \bigl( \sigma (w)-r_{1}\bigr) \bigl[ q^{\ast }(k_{1}, r_{1})\Psi \bigl(g^{\ast }(k_{1}, r_{1}) \bigr) \bigr] ^{q_{1}}\Delta k_{1}\Delta r_{1} \biggr) ^{ \frac{1}{q_{1}}}, \end{aligned}$$
which is (41). This completes the proof. □
By using the relations (5) and taking \(\mathbb{T}_{1}= \mathbb{T}_{2}=\mathbb{R}\), \(t_{0}=0\) in Theorem 7, we get the following result.
Corollary 7
Assume that \(f^{\ast }(s_{1}, t_{1})\), \(g^{\ast }(k_{1}, r_{1})\) are real-valued continuous functions, \(p^{\ast }(s_{1}, t_{1})\), \(q^{\ast }(k_{1}, r_{1})\) are two positive functions, and define
$$\begin{aligned} &F^{\ast }(s_{1}, t_{1}) =\frac{1}{P^{\ast }(s_{1}, t_{1})} \int _{0}^{s_{1}} \int _{0}^{t_{1}}p^{\ast }(\xi , \eta )f^{ \ast }(\xi ,\eta )\,d\xi \,d\eta ,\\ & P^{\ast }(s_{1}, t_{1})= \int _{0}^{s_{1}} \int _{0}^{t_{1}}p^{\ast }(\xi , \eta )\,d \xi \,d\eta, \\ &G^{\ast }(k_{1}, r_{1}) =\frac{1}{Q^{\ast }(k_{1}, r_{1})} \int _{0}^{k_{1}} \int _{0}^{r_{1}}q^{\ast }(\xi ,\eta )g^{\ast }(\xi , \eta )\,d\xi \,d\eta ,\\ & Q^{\ast }(k_{1}, r_{1})= \int _{0}^{k_{1}} \int _{0}^{r_{1}}q^{\ast }(\xi , \eta )\,d\xi \,d\eta . \end{aligned}$$
Then for \((s_{1}, t_{1})\in I_{x}\times I_{y}\) and \((k_{1}, r_{1})\in I_{z}\times I_{w}\), we get
$$\begin{aligned} & \int _{0}^{x} \int _{0}^{y} \biggl( \int _{0}^{z} \int _{0}^{w} \frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))P^{\ast }(s_{1},t_{1})Q^{\ast }(k_{1}, r_{1})}{q_{1}(s_{1}t_{1})^{{p_{1}-1}}+p_{1}(k_{1}r_{1})^{{q_{1}-1}}}\,dk_{1} \,dr_{1} \biggr) \,ds_{1}\,dt_{1} \\ &\quad \leq H^{\ast }(p_{1}, q_{1}) \biggl( \int _{0}^{x} \int _{0}^{y}(x-s_{1}) (y-t_{1}) \bigl[ p^{\ast }(s_{1}, t_{1}) \Phi \bigl(f^{\ast }(s_{1}, t_{1})\bigr) \bigr] ^{p_{1}}\,ds_{1}\,dt_{1} \biggr) ^{\frac{1}{p_{1}}} \\ &\qquad {}\times \biggl( \int _{0}^{z} \int _{0}^{w}(z-k_{1}) (w-r_{1}) \bigl[ q^{ \ast }(k_{1}, r_{1}) \Psi \bigl(g^{\ast }(k_{1}, r_{1})\bigr) \bigr] ^{q_{1}}\,dk_{1}\,dr_{1} \biggr) ^{\frac{1}{q_{1}}}, \end{aligned}$$
where
$$ H^{\ast }(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}}(xy)^{ \frac{p_{1}-1}{p_{1}}}(zw)^{\frac{q_{1}-1}{q_{1}}}. $$
By using the relations (5) and taking \(\mathbb{T}_{1}= \mathbb{T}_{2}=\mathbb{Z}\), \(t_{0}=0\) in Theorem 7, we get the following result.
Corollary 8
Assume that \(\{a_{m_{1}, n_{1}}\}_{0\leq m_{1}, n_{1}\leq N}\), \(\{b_{k_{1}, r_{1}}\}_{0\leq k_{1}, r_{1}\leq N}\) be two nonnegative sequences of real numbers and \(\{p_{m_{1}, n_{1}}\}_{{0\leq m_{1}, n_{1}\leq N}}\), \(\{q_{k_{1}, r_{1}}\}_{0\leq k_{1}, r_{1}\leq N}\) be positive sequences and define
$$\begin{aligned} &A_{{m_{1}, n_{1}}} =\frac{1}{P_{m_{1}, n_{1}}}\sum_{ \xi =1}^{m_{1}} \sum_{\eta =1}^{n_{1}}a_{\xi , \eta },\qquad P_{m_{1},n_{1}}=\sum_{\xi =1}^{m_{1}}\sum _{\eta =1}^{n_{1}}p_{\xi , \eta }, \\ &B_{{k_{1}, r_{1}}} =\frac{1}{Q_{{k_{1}, r_{1}}}} \sum_{\xi =1}^{k_{1}} \sum_{\eta =1}^{r_{1}}b_{\xi , \eta },\qquad Q_{{k_{1},r_{1}}}=\sum_{\xi =1}^{k_{1}}\sum _{\eta =1}^{r_{1}}q_{\xi , \eta }. \end{aligned}$$
Then
$$\begin{aligned} &\sum_{s_{1}=1}^{m_{1}}\sum _{t_{1}=1}^{n_{1}} \Biggl( \sum _{k_{1}=1}^{z_{1}} \sum_{r_{1}=1}^{w_{1}} \frac{\Phi (A_{{s_{1}, t_{1}}})\Psi (B_{k_{1}, r_{1}})P_{s_{1}, t_{1}}Q_{{k_{1},r_{1}}}}{q_{1}(s_{1}t_{1})^{{p_{1}-1}}+p_{1}(k_{1}r_{1})^{{q_{1}-1}}} \Biggr) \\ &\quad \leq H^{\ast \ast }(p_{1}, q_{1}) \Biggl( \sum _{s_{1}=1}^{m_{1}}\sum _{t_{1}=1}^{n_{1}}(m_{1}-s_{1}+1) (n_{1}-t_{1}+1)\bigl[p_{s_{1}, t_{1}}\Phi (a_{s_{1}, t_{1}})\bigr]^{p_{1}} \Biggr) ^{ \frac{1}{p_{1}}} \\ &\qquad {}\times \Biggl( \sum_{k_{1}=1}^{z_{1}} \sum_{r_{1}=1}^{w_{1}}(z_{1}-k_{1}+1) (w_{1}-r_{1}+1)\bigl[q_{k_{1}, r_{1}}\Psi (b_{{k_{1}, r_{1}}})\bigr]^{q_{1}} \Biggr) ^{ \frac{1}{q_{1}}}, \end{aligned}$$
where
$$ H^{\ast \ast }(p_{1}, q_{1})=\frac{1}{p_{1}q_{1}}(m_{1}n_{1})^{ \frac{p_{1}-1}{p_{1}}}(z_{1}w_{1})^{\frac{q_{1}-1}{q_{1}}}. $$
Remark 2
By applying (10) on (33) in Theorem 6 and (41) in Theorem 7, respectively, we get the following inequalities:
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))(s_{1}-t_{0})(t_{1}-t_{0})(k_{1}-t_{0})(r_{1}-t_{0})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}} \\ &\qquad {}\times\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq K(p_{1}, q_{1}) \biggl\{ \frac{1}{p_{1}} \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl(\sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \bigl[ \Phi \bigl(f^{ \ast }(s_{1}, t_{1})\bigr) \bigr] ^{p_{1}}\Delta s_{1}\Delta t_{1} \biggr) \\ &\qquad {} +\frac{1}{q_{1}} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl( \sigma (z)-k_{1} \bigr) \bigl(\sigma (w)-r_{1}\bigr) \bigl[ \Psi \bigl(g^{\ast }(k_{1}, r_{1})\bigr) \bigr] ^{q_{1}}\Delta k_{1}\Delta r_{1} \biggr) \biggr\} , \end{aligned}$$
where \(K(p_{1}, q_{1})\) is defined in (34), and
$$\begin{aligned} & \int _{t_{0}}^{x} \int _{t_{0}}^{y} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\frac{\Phi (F^{\ast }(s_{1}, t_{1}))\Psi (G^{\ast }(k_{1}, r_{1}))P^{\ast }(s_{1}, t_{1})Q^{\ast }(k_{1}, r_{1})}{q_{1}[(s_{1}-t_{0})(t_{1}-t_{0})]^{{p_{1}-1}}+p_{1} [ (k_{1}-t_{0})(r_{1}-t_{0}) ] ^{q_{1}-1}}\Delta k_{1}\Delta r_{1} \biggr) \Delta s_{1}\Delta t_{1} \\ &\quad \leq H(p_{1}, q_{1}) \biggl\{ \frac{1}{p_{1}} \biggl( \int _{t_{0}}^{x} \int _{t_{0}}^{y}\bigl(\sigma (x)-s_{1} \bigr) \bigl(\sigma (y)-t_{1}\bigr) \bigl[ p^{\ast }(s_{1}, t_{1})\Phi \bigl(f^{\ast }(s_{1}, t_{1}) \bigr) \bigr] ^{p_{1}} \Delta s_{1}\Delta t_{1} \biggr) \\ &\qquad {} +\frac{1}{q_{1}} \biggl( \int _{t_{0}}^{z} \int _{t_{0}}^{w}\bigl( \sigma (z)-k_{1} \bigr) \bigl(\sigma (w)-r_{1}\bigr) \bigl[ q^{\ast }(k_{1}, r_{1}) \Psi \bigl(g^{\ast }(k_{1}, r_{1}) \bigr) \bigr] ^{q_{1}}\Delta k_{1} \Delta r_{1} \biggr) \biggr\} , \end{aligned}$$
where \(H(p_{1}, q_{1})\) is defined in (42).
Remark 3
Clearly, for the one-dimensional case, Theorems 4, 5, 6, and 7, coincide with Corollary 3.3, Theorems 3.2, 3.3, and 3.4, respectively, of [7].