Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Neural-network quantum states for many-body physics

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Variational quantum calculations have borrowed many tools and algorithms from the machine learning community in the recent years. Leveraging great expressive power and efficient gradient-based optimization, researchers have shown that trial states inspired by deep learning problems can accurately model many-body correlated phenomena in spin, fermionic and qubit systems. In this review, we derive the central equations of different flavors variational Monte Carlo (VMC) approaches, including ground state search, time evolution and overlap optimization, and discuss data-driven tasks like quantum state tomography. An emphasis is put on the geometry of the variational manifold as well as bottlenecks in practical implementations. An overview of recent results of first-principles ground-state and real-time calculations is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statement

There is no data associated with the manuscript.

Notes

  1. By efficiently we mean with an amount of computational resources that scales polynomially with the system size

  2. In the context of NQS for fermionic systems, universal representation claims are based on lookup-table arguments, thus not providing any practical information on the classes of states that can be represented by these ansatze

References

  1. G. Carleo et al., Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019). https://doi.org/10.1103/RevModPhys.91.045002

    Article  ADS  Google Scholar 

  2. A. Dawid et al., Modern applications of machine learning in quantum sciences (2022). URL http://arxiv.org/abs/2204.04198

  3. G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989). https://doi.org/10.1007/BF02551274

    Article  MathSciNet  Google Scholar 

  5. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  6. Gallant & White, There exists a neural network that does not make avoidable mistakes. IEEE 1988 International Conference on Neural Networks, vol. 1 (1988), p. 657–664

  7. X. Gao, L.-M. Duan, Efficient representation of quantum many-body states with deep neural networks. Nat. Commun. 8, 662 (2017)

    Article  ADS  Google Scholar 

  8. J. Chen, S. Cheng, H. Xie, L. Wang, T. Xiang, Equivalence of restricted Boltzmann machines and tensor network states. Phys. Rev. B 97, 085104 (2018). https://doi.org/10.1103/PhysRevB.97.085104

    Article  ADS  Google Scholar 

  9. O. Sharir, A. Shashua, G. Carleo, Neural tensor contractions and the expressive power of deep neural quantum states. Phys. Rev. B 106, 205136 (2022). https://doi.org/10.1103/PhysRevB.106.205136

    Article  ADS  Google Scholar 

  10. D. Wu, R. Rossi, F. Vicentini, G. Carleo, From tensor-network quantum states to tensorial recurrent neural networks. Phys. Rev. Res. 5, L032001 (2023). https://doi.org/10.1103/PhysRevResearch.5.L032001

    Article  Google Scholar 

  11. C. Gauvin-Ndiaye, J. Tindall, J.R. Moreno, A. Georges, Mott transition and volume law entanglement with neural quantum states (2023). URL http://arxiv.org/abs/2311.05749

  12. S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992). https://doi.org/10.1103/PhysRevLett.69.2863

    Article  ADS  Google Scholar 

  13. F. Verstraete, J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions (2004). URL https://arxiv.org/abs/cond-mat/0407066. ArXiv:cond-mat/0407066

  14. A. Sinibaldi, C. Giuliani, G. Carleo, F. Vicentini, Unbiasing time-dependent variational Monte Carlo by projected quantum evolution. Quantum 7, 1131 (2023)

    Article  Google Scholar 

  15. M. Bukov, M. Schmitt, M. Dupont, Learning the ground state of a non-stoquastic quantum Hamiltonian in a rugged neural network landscape. SciPost Phys. 10, 147 (2021). https://doi.org/10.21468/SciPostPhys.10.6.147

    Article  ADS  Google Scholar 

  16. C.-Y. Park, M.J. Kastoryano, Geometry of learning neural quantum states. Phys. Rev. Res. 2, 023232 (2020). https://doi.org/10.1103/PhysRevResearch.2.023232

    Article  Google Scholar 

  17. T. Westerhout, N. Astrakhantsev, K.S. Tikhonov, M.I. Katsnelson, A.A. Bagrov, Generalization properties of neural network approximations to frustrated magnet ground states. Nat. Commun. 11, 1593 (2020). https://doi.org/10.1038/s41467-020-15402-w

    Article  ADS  Google Scholar 

  18. D. Luo, J. Halverson, Infinite neural network quantum states: entanglement and training dynamics. Mach. Learn. Sci. Technol. 4, 025038 (2023). https://doi.org/10.1088/2632-2153/ace02f

    Article  ADS  Google Scholar 

  19. K. Choo, T. Neupert, G. Carleo, Two-dimensional frustrated \({J}_{1}-{J}_{2}\) model studied with neural network quantum states. Phys. Rev. B 100, 125124 (2019). https://doi.org/10.1103/PhysRevB.100.125124

    Article  ADS  Google Scholar 

  20. C. Fu et al., Lattice convolutional networks for learning ground states of quantum many-body systems (2022). URL http://arxiv.org/abs/2206.07370. ArXiv:2206.07370 [quant-ph]

  21. M. Reh, M. Schmitt, M. Gärttner, Optimizing design choices for neural quantum states. Phys. Rev. B 107, 195115 (2023). https://doi.org/10.1103/PhysRevB.107.195115

    Article  ADS  Google Scholar 

  22. A. Chen, M. Heyl, Efficient optimization of deep neural quantum states toward machine precision (2023). URL http://arxiv.org/abs/2302.01941

  23. N. Astrakhantsev et al., Broken-symmetry ground states of the Heisenberg model on the pyrochlore lattice. Phys. Rev. X 11, 041021 (2021). https://doi.org/10.1103/PhysRevX.11.041021

    Article  Google Scholar 

  24. Y. Nomura, A.S. Darmawan, Y. Yamaji, M. Imada, Restricted Boltzmann machine learning for solving strongly correlated quantum systems. Phys. Rev. B 96, 205152 (2017). https://doi.org/10.1103/PhysRevB.96.205152

    Article  ADS  Google Scholar 

  25. D. Luo, B.K. Clark, Backflow transformations via neural networks for quantum many-body wave functions. Phys. Rev. Lett. 122, 226401 (2019). https://doi.org/10.1103/PhysRevLett.122.226401

    Article  ADS  Google Scholar 

  26. J. Robledo Moreno, G. Carleo, A. Georges, J. Stokes, Fermionic wave functions from neural-network constrained hidden states. Proc. Natl. Acad. Sci. 119, e2122059119 (2022). https://doi.org/10.1073/pnas.2122059119

    Article  Google Scholar 

  27. D. Pfau, J.S. Spencer, A.G.D.G. Matthews, W.M.C. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Phys. Rev. Res. 2, 033429 (2020). https://doi.org/10.1103/PhysRevResearch.2.033429

    Article  Google Scholar 

  28. J. Hermann, Z. Schätzle, F. Noé, Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020). https://doi.org/10.1038/s41557-020-0544-y

    Article  Google Scholar 

  29. D. Wu et al., Variational benchmarks for quantum many-body problems (2023). URL http://arxiv.org/abs/2302.04919

  30. M. Schmitt, M. Heyl, Quantum many-body dynamics in two dimensions with artificial neural networks. Phys. Rev. Lett. 125, 100503 (2020). https://doi.org/10.1103/PhysRevLett.125.100503

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Medvidović, D. Sels, Variational quantum dynamics of two-dimensional rotor models. PRX Quantum 4, 040302 (2023). https://doi.org/10.1103/PRXQuantum.4.040302

    Article  ADS  Google Scholar 

  32. I.L. Gutiérrez, C.B. Mendl, Real time evolution with neural-network quantum states. Quantum 6, 627 (2022). https://doi.org/10.22331/q-2022-01-20-627

    Article  Google Scholar 

  33. K. Donatella, Z. Denis, A.L. Boité, C. Ciuti, Dynamics with autoregressive neural quantum states: application to critical quench dynamics. Phys. Rev. A 108, 022210 (2023). https://doi.org/10.1103/PhysRevA.108.022210

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Medvidović, G. Carleo, Classical variational simulation of the quantum approximate optimization algorithm. NPJ Quantum Inf. 7, 101 (2021)

    Article  ADS  Google Scholar 

  35. G. Torlai et al., Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018). https://doi.org/10.1038/s41567-018-0048-5

    Article  Google Scholar 

  36. J. Carrasquilla, G. Torlai, How to use neural networks to investigate quantum many-body physics. PRX Quantum 2, 040201 (2021). https://doi.org/10.1103/PRXQuantum.2.040201

    Article  ADS  Google Scholar 

  37. J. Hermann et al., Ab initio quantum chemistry with neural-network wavefunctions. Nat. Rev. Chem. 7, 692–709 (2023). https://doi.org/10.1038/s41570-023-00516-8

    Article  Google Scholar 

  38. H. Lange, A.V. de Walle, A. Abedinnia, A. Bohrdt, From architectures to applications: a review of neural quantum states (2024). URL http://arxiv.org/abs/2402.09402

  39. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Westview Press, Boulder, 1998)

    Google Scholar 

  40. X. Yuan, S. Endo, Q. Zhao, Y. Li, S.C. Benjamin, Theory of variational quantum simulation. Quantum 3, 191 (2019). https://doi.org/10.22331/q-2019-10-07-191

    Article  Google Scholar 

  41. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)

    Google Scholar 

  42. F. Becca, S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

  43. S. Brooks, A. Gelman, G. Jones, X.-L. Meng (eds.), Handbook of Markov Chain Monte Carlo (Chapman and Hall/CRC, Boca Raton, 2011)

    Google Scholar 

  44. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  ADS  Google Scholar 

  45. W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  46. M. Newman, G. Barkema, Monte Carlo Methods in Statistical Physics-M (Clarendon Press, Oxford, 1999)

    Book  Google Scholar 

  47. R.L. Strawderman, Monte Carlo methods in statistical physics. J. Am. Stat. Assoc. 96, 778–778 (2001). https://doi.org/10.1198/jasa.2001.s394

    Article  Google Scholar 

  48. U. Wolff, Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361–364 (1989)

    Article  ADS  Google Scholar 

  49. R.M. Neal, Handbook of Markov Chain Monte Carlo (Chapman and Hall/CRC, Boca Raton, 2011)

    Google Scholar 

  50. M.D. Hoffman, A. Gelman, The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2011)

    MathSciNet  Google Scholar 

  51. B. Carpenter et al., Stan: a probabilistic programming language. J. Stat. Softw. 76, 1 (2017). https://doi.org/10.18637/jss.v076.i01

    Article  Google Scholar 

  52. M. Betancourt, A conceptual introduction to Hamiltonian Monte Carlo (2017). URL http://arxiv.org/abs/1701.02434

  53. T.D. Barrett, A. Malyshev, A.I. Lvovsky, Autoregressive neural-network wavefunctions for ab initio quantum chemistry. Nat. Mach. Intell. 4, 351–358 (2022)

    Article  Google Scholar 

  54. M. Hibat-Allah, M. Ganahl, L.E. Hayward, R.G. Melko, J. Carrasquilla, Recurrent neural network wave functions. Phys. Rev. Res. 2, 023358 (2020). https://doi.org/10.1103/PhysRevResearch.2.023358

    Article  Google Scholar 

  55. M. Hibat-Allah, E.M. Inack, R. Wiersema, R.G. Melko, J. Carrasquilla, Variational neural annealing. Nat. Mach. Intell. 3, 952–961 (2021)

    Article  Google Scholar 

  56. S. Sorella, Green function Monte Carlo with stochastic reconfiguration. Phys. Rev. Lett. 80, 4558–4561 (1998). https://doi.org/10.1103/PhysRevLett.80.4558

    Article  ADS  Google Scholar 

  57. S.I. Amari, Natural gradient works efficiently in learning. Neural Comput. 10, 251–276 (1998). https://doi.org/10.1162/089976698300017746

    Article  Google Scholar 

  58. J. Stokes, J. Izaac, N. Killoran, G. Carleo, Quantum natural gradient. Quantum 4, 269 (2020)

    Article  Google Scholar 

  59. J.C. Butcher, Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math. Soc. 3, 185–201 (1963)

    Article  MathSciNet  Google Scholar 

  60. J.C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, New York, 2008)

    Book  Google Scholar 

  61. J. Martens, R. Grosse, Optimizing neural networks with Kronecker-factored approximate curvature (2015). URL http://arxiv.org/abs/1503.05671

  62. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014). URL http://arxiv.org/abs/1412.6980

  63. A. Graves, Generating sequences with recurrent neural networks (2013)

  64. L. Hackl et al., Geometry of variational methods: dynamics of closed quantum systems. SciPost Phys. 9, 048 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  65. A. Jacot, F. Gabriel, C. Hongler, Neural tangent kernel: convergence and generalization in neural networks (2018). URL http://arxiv.org/abs/1806.07572

  66. G. Carleo, F. Becca, M. Schiró, M. Fabrizio, Localization and glassy dynamics of many-body quantum systems. Sci. Rep. 2, 243 (2012)

    Article  ADS  Google Scholar 

  67. G. Carleo, L. Cevolani, L. Sanchez-Palencia, M. Holzmann, Unitary dynamics of strongly interacting Bose gases with the time-dependent variational Monte Carlo method in continuous space. Phys. Rev. X 7, 031026 (2017). https://doi.org/10.1103/PhysRevX.7.031026

    Article  Google Scholar 

  68. K. Ido, T. Ohgoe, M. Imada, Time-dependent many-variable variational Monte Carlo method for nonequilibrium strongly correlated electron systems. Phys. Rev. B 92, 245106 (2015). https://doi.org/10.1103/PhysRevB.92.245106

    Article  ADS  Google Scholar 

  69. G. Torlai, R.G. Melko, Latent space purification via neural density operators. Phys. Rev. Lett. 120, 240503 (2018). https://doi.org/10.1103/PhysRevLett.120.240503

    Article  ADS  MathSciNet  Google Scholar 

  70. G. Torlai et al., Integrating neural networks with a quantum simulator for state reconstruction. Phys. Rev. Lett. 123, 230504 (2019). https://doi.org/10.1103/PhysRevLett.123.230504

    Article  ADS  Google Scholar 

  71. Y. Nomura, Helping restricted Boltzmann machines with quantum-state representation by restoring symmetry. J. Phys. Condens. Matter 33, 174003 (2021). https://doi.org/10.1088/1361-648X/abe268

    Article  ADS  Google Scholar 

  72. J. Stokes, J. Robledo Moreno, E.A. Pnevmatikakis, G. Carleo, Phases of two-dimensional spinless lattice fermions with first-quantized deep neural-network quantum states. Phys. Rev. B 102, 205122 (2020). https://doi.org/10.1103/PhysRevB.102.205122. (Publisher: American Physical Society)

    Article  ADS  Google Scholar 

  73. C. Roth, A.H. MacDonald, Group convolutional neural networks improve quantum state accuracy (2021). URL http://arxiv.org/abs/2104.05085. ArXiv:2104.05085 [cond-mat, physics:quant-ph]

  74. K. Choo, G. Carleo, N. Regnault, T. Neupert, Symmetries and many-body excitations with neural-network quantum states. Phys. Rev. Lett. 121, 167204 (2018). https://doi.org/10.1103/PhysRevLett.121.167204

    Article  ADS  Google Scholar 

  75. T. Vieijra et al., Restricted Boltzmann machines for quantum states with non-abelian or anyonic symmetries. Phys. Rev. Lett. 124, 097201 (2020). https://doi.org/10.1103/PhysRevLett.124.097201

    Article  ADS  MathSciNet  Google Scholar 

  76. T. Vieijra, J. Nys, Many-body quantum states with exact conservation of non-abelian and lattice symmetries through variational Monte Carlo. Phys. Rev. B 104, 045123 (2021). https://doi.org/10.1103/PhysRevB.104.045123

    Article  ADS  Google Scholar 

  77. A. Valenti, E. Greplova, N.H. Lindner, S.D. Huber, Correlation-enhanced neural networks as interpretable variational quantum states. Phys. Rev. Res. 4, L012010 (2022). https://doi.org/10.1103/PhysRevResearch.4.L012010

    Article  Google Scholar 

  78. H. Saito, Solving the Bose–Hubbard model with machine learning. J. Phys. Soc. Jpn. 86, 093001 (2017)

    Article  ADS  Google Scholar 

  79. H. Saito, M. Kato, Machine learning technique to find quantum many-body ground states of bosons on a lattice. J. Phys. Soc. Jpn. 87, 014001 (2018)

    Article  ADS  Google Scholar 

  80. G. Pescia, J. Han, A. Lovato, J. Lu, G. Carleo, Neural-network quantum states for periodic systems in continuous space. Phys. Rev. Res. 4, 023138 (2022). https://doi.org/10.1103/PhysRevResearch.4.023138

    Article  Google Scholar 

  81. C. Roth, Iterative retraining of quantum spin models using recurrent neural networks (2020). URL http://arxiv.org/abs/2003.06228

  82. O. Sharir, Y. Levine, N. Wies, G. Carleo, A. Shashua, Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Phys. Rev. Lett. 124, 020503 (2020). https://doi.org/10.1103/PhysRevLett.124.020503

    Article  ADS  Google Scholar 

  83. S. Morawetz, I.J.S. De Vlugt, J. Carrasquilla, R.G. Melko, U(1)-symmetric recurrent neural networks for quantum state reconstruction. Phys. Rev. A 104, 012401 (2021). https://doi.org/10.1103/PhysRevA.104.012401

    Article  ADS  MathSciNet  Google Scholar 

  84. M. Hibat-Allah, R.G. Melko, J. Carrasquilla, Supplementing recurrent neural network wave functions with symmetry and annealing to improve accuracy (2022). URL http://arxiv.org/abs/2207.14314

  85. M. Hibat-Allah, R.G. Melko, J. Carrasquilla, Investigating topological order using recurrent neural networks. Phys. Rev. B 108, 075152 (2023). https://doi.org/10.1103/PhysRevB.108.075152

    Article  ADS  Google Scholar 

  86. S. Czischek, M.S. Moss, M. Radzihovsky, E. Merali, R.G. Melko, Data-enhanced variational Monte Carlo simulations for Rydberg atom arrays. Phys. Rev. B 105, 205108 (2022). https://doi.org/10.1103/PhysRevB.105.205108

    Article  ADS  Google Scholar 

  87. T. Mendes-Santos et al., Wave function network description and Kolmogorov complexity of quantum many-body systems (2023). URL http://arxiv.org/abs/2301.13216

  88. H. Lange, F. Döschl, J. Carrasquilla, A. Bohrdt, Neural network approach to quasiparticle dispersions in doped antiferromagnets (2023). URL http://arxiv.org/abs/2310.08578

  89. T.D. Barrett, A. Malyshev, A.I. Lvovsky, Autoregressive neural-network wavefunctions for ab initio quantum chemistry. Nat. Mach. Intell. 4, 351–358 (2022)

    Article  Google Scholar 

  90. A. Malyshev, J.M. Arrazola, A.I. Lvovsky, Autoregressive neural quantum states with quantum number symmetries (2023). URL http://arxiv.org/abs/2310.04166

  91. D.-L. Deng, X. Li, S. Das Sarma, Quantum entanglement in neural network states. Phys. Rev. X 7, 021021 (2017). https://doi.org/10.1103/PhysRevX.7.021021

    Article  Google Scholar 

  92. Y. Huang, J.E. Moore, Neural network representation of tensor network and chiral states. Phys. Rev. Lett. 127, 170601 (2021). https://doi.org/10.1103/PhysRevLett.127.170601

    Article  ADS  MathSciNet  Google Scholar 

  93. F.B. Trigueros, T. Mendes-Santos, M. Heyl, Mean-field theories are simple for neural quantum states (2023). URL http://arxiv.org/abs/2308.10934

  94. M. Ruggeri, S. Moroni, M. Holzmann, Nonlinear network description for many-body quantum systems in continuous space. Phys. Rev. Lett. 120, 205302 (2018). https://doi.org/10.1103/PhysRevLett.120.205302. (Publisher: American Physical Society)

    Article  ADS  MathSciNet  Google Scholar 

  95. J.S. Spencer, D. Pfau, A. Botev, W.M.C. Foulkes, Better, faster fermionic neural networks (2020). URL http://arxiv.org/abs/2011.07125. ArXiv:2011.07125 [physics]

  96. M.T. Entwistle, Z. Schätzle, P.A. Erdman, J. Hermann, F. Noé, Electronic excited states in deep variational Monte Carlo. Nat. Commun. 14, 274 (2023). https://doi.org/10.1038/s41467-022-35534-5

    Article  ADS  Google Scholar 

  97. I. von Glehn, J.S. Spencer, D. Pfau, A self-attention ansatz for ab-initio quantum chemistry (2022). URL https://arxiv.org/abs/2211.13672. ArXiv:2211.13672

  98. G. Cassella et al., Discovering quantum phase transitions with fermionic neural networks. Phys. Rev. Lett. 130, 036401 (2023). https://doi.org/10.1103/PhysRevLett.130.036401

    Article  ADS  Google Scholar 

  99. G. Pescia, J. Nys, J. Kim, A. Lovato, G. Carleo, Message-passing neural quantum states for the homogeneous electron gas (2023). URL http://arxiv.org/abs/2305.07240

  100. J. Kim et al., Neural-network quantum states for ultra-cold fermi gases (2023). URL http://arxiv.org/abs/2305.08831

  101. W.T. Lou et al., Neural wave functions for superfluids (2023). URL http://arxiv.org/abs/2305.06989

  102. A. Lovato, C. Adams, G. Carleo, N. Rocco, Hidden-nucleons neural-network quantum states for the nuclear many-body problem. Phys. Rev. Res. 4, 043178 (2022). https://doi.org/10.1103/PhysRevResearch.4.043178

    Article  Google Scholar 

  103. A. Gnech, B. Fore, A. Lovato, Distilling the essential elements of nuclear binding via neural-network quantum states (2023). URL http://arxiv.org/abs/2308.16266

  104. B. Fore, J.M. Kim, G. Carleo, M. Hjorth-Jensen, A. Lovato, Dilute neutron star matter from neural-network quantum states (2022). URL http://arxiv.org/abs/2212.04436

  105. M. Rigo, B. Hall, M. Hjorth-Jensen, A. Lovato, F. Pederiva, Solving the nuclear pairing model with neural network quantum states. Phys. Rev. E 107, 025310 (2023). https://doi.org/10.1103/PhysRevE.107.025310

    Article  ADS  MathSciNet  Google Scholar 

  106. C. Adams, G. Carleo, A. Lovato, N. Rocco, Variational Monte Carlo calculations of \(a\le 4\) nuclei with an artificial neural-network correlator ansatz. Phys. Rev. Lett. 127, 022502 (2021). https://doi.org/10.1103/PhysRevLett.127.022502

    Article  ADS  Google Scholar 

  107. Q. Sun et al., Recent developments in the PySCF program package. J. Chem. Phys. 153, 024109 (2020). https://doi.org/10.1063/5.0006074

    Article  Google Scholar 

  108. Q. Sun et al., Pyscf: the python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 8, e1340 (2018). https://doi.org/10.1002/wcms.1340

    Article  Google Scholar 

  109. Q. Sun, Libcint: an efficient general integral library for Gaussian basis functions. J. Comput. Chem. 36, 1664–1671 (2015). https://doi.org/10.1002/jcc.23981

    Article  Google Scholar 

  110. R. Xia, S. Kais, Quantum machine learning for electronic structure calculations. Nat. Commun. 9, 4195 (2018)

    Article  ADS  Google Scholar 

  111. K. Choo, A. Mezzacapo, G. Carleo, Fermionic neural-network states for ab-initio electronic structure. Nat. Commun. 11, 2368 (2020)

    Article  ADS  Google Scholar 

  112. P.-J. Yang, M. Sugiyama, K. Tsuda, T. Yanai, Artificial neural networks applied as molecular wave function solvers. J. Chem. Theory Comput. 16, 3513–3529 (2020). https://doi.org/10.1021/acs.jctc.9b01132

    Article  Google Scholar 

  113. N. Yoshioka, W. Mizukami, F. Nori, Solving quasiparticle band spectra of real solids using neural-network quantum states. Commun. Phys. 4, 106 (2021). https://doi.org/10.1038/s42005-021-00609-0

    Article  Google Scholar 

  114. Y. Rath, G.H. Booth, Framework for efficient ab initio electronic structure with gaussian process states. Phys. Rev. B 107, 205119 (2023). https://doi.org/10.1103/PhysRevB.107.205119

    Article  ADS  Google Scholar 

  115. S.H. Sureshbabu, M. Sajjan, S. Oh, S. Kais, Implementation of quantum machine learning for electronic structure calculations of periodic systems on quantum computing devices. J. Chem. Inf. Model. 61, 2667–2674 (2021). https://doi.org/10.1021/acs.jcim.1c00294

    Article  Google Scholar 

  116. T. Zhao, J. Stokes, S. Veerapaneni, Scalable neural quantum states architecture for quantum chemistry. Mach. Learn. Sci. Technol. 4, 025034 (2023). https://doi.org/10.1088/2632-2153/acdb2f

    Article  ADS  Google Scholar 

  117. K. Inui, Y. Kato, Y. Motome, Determinant-free fermionic wave function using feed-forward neural networks. Phys. Rev. Res. 3, 043126 (2021). https://doi.org/10.1103/PhysRevResearch.3.043126

    Article  Google Scholar 

  118. J. Nys, G. Carleo, Variational solutions to fermion-to-qubit mappings in two spatial dimensions. Quantum 6, 833 (2022). https://doi.org/10.22331/q-2022-10-13-833

    Article  Google Scholar 

  119. J.R. Moreno, J. Cohn, D. Sels, M. Motta, Enhancing the expressivity of variational neural, and hardware-efficient quantum states through orbital rotations (2023). URL http://arxiv.org/abs/2302.11588

  120. J. Hubbard, B.H. Flowers, Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 276, 238–257 (1963). https://doi.org/10.1098/rspa.1963.0204

    Article  ADS  Google Scholar 

  121. M. Qin et al., Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020). https://doi.org/10.1103/PhysRevX.10.031016

    Article  Google Scholar 

  122. N. Baldelli, B. Kloss, M. Fishman, A. Wietek, Fragmented superconductivity in the Hubbard model as solitons in Ginzburg–Landau theory (2023). URL http://arxiv.org/abs/2307.11820

  123. A. Wietek et al., Mott insulating states with competing orders in the triangular lattice Hubbard model. Phys. Rev. X 11, 041013 (2021). https://doi.org/10.1103/PhysRevX.11.041013

    Article  Google Scholar 

  124. B.-X. Zheng et al., Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  125. N. Lanatà, T.-H. Lee, Y.-X. Yao, V. Dobrosavljević, Emergent Bloch excitations in Mott matter. Phys. Rev. B 96, 195126 (2017). https://doi.org/10.1103/PhysRevB.96.195126

    Article  Google Scholar 

  126. P. Jordan, E. Wigner, Über das paulische äquivalenzverbot. Zeit. Phys 47, 631–651 (1928). https://doi.org/10.1007/BF01331938

    Article  ADS  Google Scholar 

  127. R. Jastrow, Many-body problem with strong forces. Phys. Rev. 98, 1479–1484 (1955). https://doi.org/10.1103/PhysRev.98.1479

    Article  ADS  Google Scholar 

  128. S. Humeniuk, Y. Wan, L. Wang, Autoregressive neural Slater–Jastrow ansatz for variational Monte Carlo simulation. SciPost Phys. 14, 171 (2023). https://doi.org/10.21468/SciPostPhys.14.6.171

    Article  ADS  MathSciNet  Google Scholar 

  129. E. Wigner, F. Seitz, On the constitution of metallic sodium. ii. Phys. Rev. 46, 509–524 (1934). https://doi.org/10.1103/PhysRev.46.509

    Article  ADS  Google Scholar 

  130. R.P. Feynman, Atomic theory of the two-fluid model of liquid helium. Phys. Rev. 94, 262–277 (1954). https://doi.org/10.1103/PhysRev.94.262

    Article  ADS  Google Scholar 

  131. R.P. Feynman, M. Cohen, Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189–1204 (1956). https://doi.org/10.1103/PhysRev.102.1189

    Article  ADS  Google Scholar 

  132. Y. Kwon, D.M. Ceperley, R.M. Martin, Effects of three-body and backflow correlations in the two-dimensional electron gas. Phys. Rev. B 48, 12037–12046 (1993). https://doi.org/10.1103/PhysRevB.48.12037

    Article  ADS  Google Scholar 

  133. Y. Kwon, D.M. Ceperley, R.M. Martin, Effects of backflow correlation in the three-dimensional electron gas: quantum Monte Carlo study. Phys. Rev. B 58, 6800–6806 (1998). https://doi.org/10.1103/PhysRevB.58.6800

    Article  ADS  Google Scholar 

  134. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957). https://doi.org/10.1002/cpa.3160100201

    Article  MathSciNet  Google Scholar 

  135. D. Pfau, S. Axelrod, H. Sutterud, I. von Glehn, J.S. Spencer, Natural quantum Monte Carlo computation of excited states (2023). URL http://arxiv.org/abs/2308.16848

  136. D. Luo, A.P. Reddy, T. Devakul, L. Fu, Artificial intelligence for artificial materials: moiré atom (2023). URL http://arxiv.org/abs/2303.08162

  137. L.F. Tocchio, F. Becca, A. Parola, S. Sorella, Role of backflow correlations for the nonmagnetic phase of the \(t-{t}^{{^{\prime }}}\) Hubbard model. Phys. Rev. B 78, 041101 (2008). https://doi.org/10.1103/PhysRevB.78.041101

    Article  ADS  Google Scholar 

  138. L.F. Tocchio, F. Becca, C. Gros, Backflow correlations in the Hubbard model: an efficient tool for the study of the metal-insulator transition and the large-\(u\) limit. Phys. Rev. B 83, 195138 (2011). https://doi.org/10.1103/PhysRevB.83.195138

    Article  ADS  Google Scholar 

  139. S.E. Barnes, New method for the Anderson model. J. Phys. F Met. Phys. 6, 1375–1383 (1976). https://doi.org/10.1088/0305-4608/6/7/018

    Article  ADS  Google Scholar 

  140. S.E. Barnes, New method for the Anderson model II. The u=0 limit. J. Phys. F Met. Phys. 7, 2637–2647 (1977). https://doi.org/10.1088/0305-4608/7/12/022

    Article  ADS  Google Scholar 

  141. G. Kotliar, A.E. Ruckenstein, New functional integral approach to strongly correlated fermi systems: The Qutzwiller approximation as a saddle point. Phys. Rev. Lett. 57, 1362–1365 (1986). https://doi.org/10.1103/PhysRevLett.57.1362

    Article  ADS  MathSciNet  Google Scholar 

  142. G. Kotliar, The large n expansion and the strong correlation problem, in Strongly Interacting Fermions and High-Tc Superconductivity, Les Houches, Session LVI. ed. by B. Doucot, J. Zinn-Justin (Elsevier, Amsterdam, 1995), p.197

    Google Scholar 

  143. T. Li, P. Wölfle, P.J. Hirschfeld, Spin-rotation-invariant slave-boson approach to the Hubbard model. Phys. Rev. B 40, 6817–6821 (1989). https://doi.org/10.1103/PhysRevB.40.6817

    Article  ADS  Google Scholar 

  144. R. Frésard, P. Wölfle, Unified slave boson representation of spin and charge degrees of freedom for strongly correlated fermi systems. Int. J. Mod. Phys. B 06, 685–704 (1992). https://doi.org/10.1142/S0217979292000414

    Article  ADS  MathSciNet  Google Scholar 

  145. C. Jayaprakash, H.R. Krishnamurthy, S. Sarker, Mean-field theory for the t-j model. Phys. Rev. B 40, 2610–2613 (1989). https://doi.org/10.1103/PhysRevB.40.2610

    Article  ADS  Google Scholar 

  146. C.L. Kane, P.A. Lee, T.K. Ng, B. Chakraborty, N. Read, Mean-field theory of the spiral phases of a doped antiferromagnet. Phys. Rev. B 41, 2653–2656 (1990). https://doi.org/10.1103/PhysRevB.41.2653

    Article  ADS  Google Scholar 

  147. S. Florens, A. Georges, Quantum impurity solvers using a slave rotor representation. Phys. Rev. B 66, 165111 (2002). https://doi.org/10.1103/PhysRevB.66.165111

    Article  ADS  Google Scholar 

  148. S. Florens, A. Georges, Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions. Phys. Rev. B 70, 035114 (2004). https://doi.org/10.1103/PhysRevB.70.035114

    Article  ADS  Google Scholar 

  149. L. de Medici, A. Georges, S. Biermann, Orbital-selective Mott transition in multiband systems: slave-spin representation and dynamical mean-field theory. Phys. Rev. B 72, 205124 (2005). https://doi.org/10.1103/PhysRevB.72.205124

    Article  ADS  Google Scholar 

  150. F. Lechermann, A. Georges, G. Kotliar, O. Parcollet, Rotationally invariant slave-boson formalism and momentum dependence of the quasiparticle weight. Phys. Rev. B 76, 155102 (2007). https://doi.org/10.1103/PhysRevB.76.155102

    Article  ADS  Google Scholar 

  151. N. Lanatà, T.-H. Lee, Y.-X. Yao, V. Dobrosavljević, Emergent Bloch excitations in Mott matter. Phys. Rev. B 96, 195126 (2017). https://doi.org/10.1103/PhysRevB.96.195126

    Article  Google Scholar 

  152. M.S. Frank et al., Quantum embedding description of the Anderson lattice model with the ghost Qutzwiller approximation. Phys. Rev. B 104, L081103 (2021). https://doi.org/10.1103/PhysRevB.104.L081103

    Article  ADS  Google Scholar 

  153. D. Guerci, M. Capone, M. Fabrizio, Exciton Mott transition revisited. Phys. Rev. Mater. 3, 054605 (2019). https://doi.org/10.1103/PhysRevMaterials.3.054605

    Article  Google Scholar 

  154. D. Guerci, Beyond simple variational approaches to strongly correlated electron systems. Ph.D. thesis, International School for Advanced Studies (SISSA) (2019). URL https://iris.sissa.it/handle/20.500.11767/103994#.YZBFIC9w2Wg

  155. Y.-H. Zhang, S. Sachdev, From the pseudogap metal to the fermi liquid using ancilla qubits. Phys. Rev. Res. 2, 023172 (2020). https://doi.org/10.1103/PhysRevResearch.2.023172

    Article  Google Scholar 

  156. A. Nikolaenko, M. Tikhanovskaya, S. Sachdev, Y.-H. Zhang, Small to large fermi surface transition in a single-band model using randomly coupled ancillas. Phys. Rev. B 103, 235138 (2021). https://doi.org/10.1103/PhysRevB.103.235138

    Article  ADS  Google Scholar 

  157. P. Coleman, New approach to the mixed-valence problem. Phys. Rev. B 29, 3035–3044 (1984). https://doi.org/10.1103/PhysRevB.29.3035

    Article  ADS  Google Scholar 

  158. D. Thouless, Stability conditions and nuclear rotations in the Hartree-Fock theory. Nucl. Phys. 21, 225–232 (1960)

    Article  MathSciNet  Google Scholar 

  159. R. Verdel, M. Schmitt, Y.-P. Huang, P. Karpov, M. Heyl, Variational classical networks for dynamics in interacting quantum matter. Phys. Rev. B 103, 165103 (2021)

    Article  ADS  Google Scholar 

  160. M. Schmitt, M. Heyl, Quantum dynamics in transverse-field Ising models from classical networks. SciPost Phys. 4, 013 (2018)

    Article  ADS  Google Scholar 

  161. P. Karpov, R. Verdel, Y.-P. Huang, M. Schmitt, M. Heyl, Disorder-free localization in an interacting 2D lattice gauge theory. Phys. Rev. Lett. 126, 130401 (2021). https://doi.org/10.1103/PhysRevLett.126.130401

    Article  ADS  Google Scholar 

  162. T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning. Ann. Stat. 36, 1171–1220 (2008). https://doi.org/10.1214/009053607000000677.full

    Article  MathSciNet  Google Scholar 

  163. M. Schmitt, M.M. Rams, J. Dziarmaga, M. Heyl, W.H. Zurek, Quantum phase transition dynamics in the two-dimensional transverse-field Ising model. Sci. Adv. 8, 6850 (2022). https://doi.org/10.1126/sciadv.abl6850

    Article  ADS  Google Scholar 

  164. D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, A. Browaeys, Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018)

    Article  ADS  Google Scholar 

  165. H. Labuhn et al., Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016)

    Article  ADS  Google Scholar 

  166. E. Guardado-Sanchez et al., Probing the quench dynamics of antiferromagnetic correlations in a 2D quantum Ising spin system. Phys. Rev. X 8, 021069 (2018). https://doi.org/10.1103/PhysRevX.8.021069

    Article  Google Scholar 

  167. Y. Kim et al., Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023)

    Article  ADS  Google Scholar 

  168. W.H. Zurek, Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985)

    Article  ADS  Google Scholar 

  169. W. Zurek, Cosmological experiments in condensed matter systems. Phys. Rep. 276, 177–221 (1996)

    Article  ADS  Google Scholar 

  170. T. Mendes-Santos, M. Schmitt, M. Heyl, Highly resolved spectral functions of two-dimensional systems with neural quantum states. Phys. Rev. Lett. 131, 046501 (2023). https://doi.org/10.1103/PhysRevLett.131.046501

    Article  ADS  MathSciNet  Google Scholar 

  171. H. Burau, M. Heyl, Unitary long-time evolution with quantum renormalization groups and artificial neural networks. Phys. Rev. Lett. 127, 050601 (2021). https://doi.org/10.1103/PhysRevLett.127.050601

    Article  ADS  MathSciNet  Google Scholar 

  172. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–44 (2015)

    Article  ADS  Google Scholar 

  173. B. Josephson, Possible new effects in superconductive Tunnelling. Phys. Lett. 1, 251–253 (1962)

    Article  ADS  Google Scholar 

  174. B. Josephson, Supercurrents through barriers. Adv. Phys. 14, 419–451 (1965)

    Article  ADS  Google Scholar 

  175. P. Martinoli, C. Leemann, Two dimensional Josephson junction arrays. J. Low Temp. Phys. 118, 699–731 (2000). https://doi.org/10.1023/A:1004651730459

    Article  ADS  Google Scholar 

  176. N. Vogt et al., One-dimensional Josephson junction arrays: lifting the Coulomb blockade by depinning. Phys. Rev. B 92, 045435 (2015). https://doi.org/10.1103/PhysRevB.92.045435

    Article  ADS  Google Scholar 

  177. A.F. Kockum, F. Nori, Quantum bits with Josephson junctions. Springer Ser. Mater. Sci. 286, 703–741 (2019). https://doi.org/10.1007/978-3-030-20726-7_17. arXiv:1908.09558

    Article  Google Scholar 

  178. C. Berke, E. Varvelis, S. Trebst, A. Altland, D.P. DiVincenzo, Transmon platform for quantum computing challenged by chaotic fluctuations. Nat. Commun. 13, 2495 (2022). https://doi.org/10.1038/s41467-022-29940-y

    Article  ADS  Google Scholar 

  179. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  180. B. Jónsson, B. Bauer, G. Carleo, Neural-network states for the classical simulation of quantum computing (2018). URL http://arxiv.org/abs/1808.05232. ArXiv:1808.05232

  181. E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm (2014). URL http://arxiv.org/abs/1411.4028

  182. E. Farhi, A.W. Harrow, Quantum supremacy through the quantum approximate optimization algorithm (2016). URL http://arxiv.org/abs/1602.07674

  183. M.S. Moss et al., Enhancing variational monte carlo using a programmable quantum simulator (2023). URL http://arxiv.org/abs/2308.02647

  184. E.R. Bennewitz, F. Hopfmueller, B. Kulchytskyy, J. Carrasquilla, P. Ronagh, Neural error mitigation of near-term quantum simulations. Nat. Mach. Intell. 4, 618–624 (2022)

    Article  Google Scholar 

  185. A. Vaswani et al., Attention is all you need (2017). URL http://arxiv.org/abs/1706.03762

  186. D. Kochkov, B.K. Clark, Variational optimization in the AI era: Computational graph states and supervised wave-function optimization (2018). URL http://arxiv.org/abs/1811.12423

  187. D. Luo, J. Halverson, Infinite neural network quantum states: entanglement and training dynamics. Mach. Learn. Sci. Technol. 4, 025038 (2023). https://doi.org/10.1088/2632-2153/ace02f

    Article  ADS  Google Scholar 

  188. D. Zgid, M. Nooijen, The density matrix renormalization group self-consistent field method: orbital optimization with the density matrix renormalization group method in the active space. J. Comput. Phys. 128, 144116 (2008)

    Google Scholar 

  189. D. Ghosh, J. Hachmann, T. Yanai, G.K.-L. Chan, Orbital optimization in the density matrix renormalization group, with applications to polyenes and \(\beta\)-carotene. J. Comput. Phys. 128, 144117 (2008). https://doi.org/10.1063/1.2883976

    Article  Google Scholar 

  190. S. Wouters, D. Van Neck, The density matrix renormalization group for ab initio quantum chemistry. Eur. Phys. J. 68, 272 (2014)

    ADS  Google Scholar 

  191. Y. Ma, S. Knecht, S. Keller, M. Reiher, Second-order self-consistent-field density-matrix renormalization group. J. Chem. Theory Comput. 13, 2533–2549 (2017). https://doi.org/10.1021/acs.jctc.6b01118

    Article  Google Scholar 

  192. A.-K. Wu, M.T. Fishman, J.H. Pixley, E.M. Stoudenmire, Disentangling interacting systems with fermionic Gaussian circuits: application to the single impurity Anderson model (2022). URL http://arxiv.org/abs/2212.09798

  193. D. Luo, Z. Chen, J. Carrasquilla, B.K. Clark, Autoregressive neural network for simulating open quantum systems via a probabilistic formulation (2020). URL http://arxiv.org/abs/2009.05580

  194. O. Dugan, P.Y. Lu, R. Dangovski, D. Luo, M. Soljačić, Q-flow: generative modeling for differential equations of open quantum dynamics with normalizing flows (2023). URL http://arxiv.org/abs/2302.12235

Download references

Acknowledgements

M. M. and J. R. M acknowledge support from the CCQ graduate fellowship in computational quantum physics. The Flatiron Institute is a division of the Simons Foundation. The authors acknowledge useful discussions with Antoine Georges, Christopher Roth, Schuyler Moss, Agnes Valenti, Alev Orfi, Anna Dawid and Anirvan Sengupta.

Funding

Simons Foundation (Matija Medvidović, Javier Robledo Moreno).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matija Medvidović.

Appendix A: Derivation of the projected equations of motion

Appendix A: Derivation of the projected equations of motion

In Eq. 15 in the main text, a simple update scheme for variational parameters is presented:

$$\begin{aligned} |\Psi _{\theta + \delta \theta }\rangle = e^{-\delta \tau H} |\Psi _\theta \rangle \end{aligned}$$
(A1)

where \(|\Psi _\theta \rangle = |\psi \rangle / \sqrt{\langle {\psi }|{\psi } \rangle }\) is the normalized version of our variational state of choice, turning the proportionality sign in Eq. 15 into an equality. We note that the differential version of Eq. A1, \(\frac{\textrm{d}}{\textrm{d}\tau } |\Psi _\theta \rangle = - H |\Psi _\theta \rangle\) is known as the Bloch equation and can serve as an equivalent starting point for the following analysis.

In this appendix, we derive the projected equations of motion given in Eq. 16 for variational parameters \(\theta\). We note that the following derivation plays out almost identically for the case of real-time evolution, upon substitution \(\delta \tau \rightarrow i \delta t\). Borrowing notational conventions set up in Sect. 2, we begin by Taylor-expanding both sides of Eq. 15 in small parameters:

$$\begin{aligned} \begin{gathered} e ^{-\delta \tau H} |\Psi _{\theta }\rangle = \left( \mathbbm {1} - \delta \tau H \right) |\Psi _{\theta }\rangle + \cdots \\ \quad |\Psi _{\theta + \delta \theta }\rangle = |\Psi _{\theta }\rangle + \sum _\mu \delta \theta ^\mu \partial _\mu |\Psi _{\theta }\rangle = \left( \mathbbm {1} + \sum _\mu \delta \theta ^\mu {\mathcal {D}} _\mu \right) |\Psi _{\theta }\rangle + \cdots \, . \end{gathered} \end{aligned}$$
(A2)

where we exploit the following chain of identities

$$\begin{aligned} \partial _\mu |\Psi _{\theta }\rangle = \sum _{{\textbf {x}} }\partial _\mu \Psi _\theta ({{\textbf {x}} }) |{{\textbf {x}} }\rangle = \sum _{{\textbf {x}} }\Psi _\theta ({{\textbf {x}} }) \, \partial _\mu \ln \Psi _\theta ({{\textbf {x}} }) |{{\textbf {x}} }\rangle = \left( \sum _{{{\textbf {x}} }^{'}} \partial _\mu \ln \Psi _\theta ({{\textbf {x}} }) |{\textbf {x}}^{'}\rangle \langle {\textbf {x}}^{'}| \right) \left( \sum _{{\textbf {x}} }\Psi _\theta ({{\textbf {x}} }) |{{\textbf {x}} }\rangle \right) = {\mathcal {D}} _\mu |\psi _\theta \rangle \end{aligned}$$
(A3)

to construct a convenient representation of derivative operators

$$\begin{aligned} \partial _\mu \mapsto {\mathcal {D}} _\mu = \sum _{{{\textbf {x}} }} \partial _\mu \ln \Psi _\theta ({{\textbf {x}} }) |{\textbf {x}}\rangle \langle {\textbf {x}}| \end{aligned}$$
(A4)

on the variational manifold \({\mathcal {M}} _\psi\). Truncating the Taylor expansions in Eq. A2, we get

$$\begin{aligned} \sum _\mu {\mathcal {D}} _\mu |\Psi _\theta \rangle {\dot{\theta }} ^\mu = -H |\Psi _\theta \rangle \end{aligned}$$
(A5)

and reduce the original equation to finding \({\dot{\theta }} ^\mu = {{\,\textrm{argmin}\,}}\Vert \sum _\mu {\mathcal {D}} _\mu {\dot{\theta }} ^\mu - H\Vert\). To build a convenient way of solving for \({\dot{\theta }}\), we left-multiply by \(\langle \Psi _\theta | {\mathcal {D}} ^\dagger _\nu\) and relabel indices:

$$\begin{aligned} \sum _\nu \left\langle {\mathcal {D}} _\mu ^\dagger {\mathcal {D}} _\nu \right\rangle _{\Psi _\theta } {\dot{\theta }} ^\nu = - \left\langle {\mathcal {D}} _\mu ^\dagger H\right\rangle _{\Psi _\theta } \; , \end{aligned}$$
(A6)

yielding a linear system.

Finally, we need to unpack the fact that we usually do not have access to the full normalized state \(|\Psi \rangle\). Instead, we need to substitute \(|\Psi \rangle \mapsto |\psi \rangle / \sqrt{\langle {\psi } | {\psi } \rangle }\). The expectation value changes trivially into the form that can be evaluated using Monte Carlo sampling, as discussed in the main text. However, variational derivative operators \({\mathcal {D}} _\mu\) pick up an extra term because

$$\begin{aligned} \partial _\mu \ln \Psi = \partial _\mu \ln \psi _\theta - \frac{1}{2} \frac{\langle \partial _\mu \psi _\theta |\psi _\theta \rangle + \langle \psi _\theta |\partial _\mu \psi _\theta \rangle }{\langle {\psi _\theta } | {\psi _\theta } \rangle } = \partial _\mu \ln \psi _\theta - \text{ Re }\left\langle {\mathcal {O}}_\mu \right\rangle _{\psi _\theta } \end{aligned}$$
(A7)

assuming that \(|\partial _\mu \psi _\theta \rangle = \partial _\mu |\psi _\theta \rangle\) and that all of the variational parameters \(\theta\) are real: \(\theta \in \mathbbm {R} ^P\). Therefore, we are free to substitute \({\mathcal {D}}_\mu \mapsto {\mathcal {O}}_\mu - \text{ Re }\left\langle {\mathcal {O}}_\mu \right\rangle\) in Eq. A6, resulting in

$$\begin{aligned} \text{ Re }\sum _\nu \left\{ \left\langle {\mathcal {O}}_\mu ^\dagger {\mathcal {O}}_\nu \right\rangle _{\psi _\theta } - \left\langle {\mathcal {O}}_\mu ^\dagger \right\rangle _{\psi _\theta } \left\langle \vphantom{{\mathcal {O}}_\mu ^\dagger} {\mathcal {O}}_\nu \right\rangle _{\psi _\theta } \right\} {\dot{\theta }} ^\nu = - \text{ Re }\left\{ \left\langle {\mathcal {O}}_\mu ^\dagger H\right\rangle _{\Psi _\theta } - \left\langle {\mathcal {O}}_\mu ^\dagger \right\rangle _{\psi _\theta } \left\langle \vphantom{{\mathcal {O}}_\mu ^\dagger} H \right\rangle _{\psi _\theta } \right\} \; , \end{aligned}$$
(A8)

which is identical to expressions in Eq. 16 in the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvidović, M., Moreno, J.R. Neural-network quantum states for many-body physics. Eur. Phys. J. Plus 139, 631 (2024). https://doi.org/10.1140/epjp/s13360-024-05311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05311-y

Navigation