Abstract
Variational quantum calculations have borrowed many tools and algorithms from the machine learning community in the recent years. Leveraging great expressive power and efficient gradient-based optimization, researchers have shown that trial states inspired by deep learning problems can accurately model many-body correlated phenomena in spin, fermionic and qubit systems. In this review, we derive the central equations of different flavors variational Monte Carlo (VMC) approaches, including ground state search, time evolution and overlap optimization, and discuss data-driven tasks like quantum state tomography. An emphasis is put on the geometry of the variational manifold as well as bottlenecks in practical implementations. An overview of recent results of first-principles ground-state and real-time calculations is provided.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
There is no data associated with the manuscript.
Notes
By efficiently we mean with an amount of computational resources that scales polynomially with the system size
In the context of NQS for fermionic systems, universal representation claims are based on lookup-table arguments, thus not providing any practical information on the classes of states that can be represented by these ansatze
References
G. Carleo et al., Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019). https://doi.org/10.1103/RevModPhys.91.045002
A. Dawid et al., Modern applications of machine learning in quantum sciences (2022). URL http://arxiv.org/abs/2204.04198
G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017)
G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989). https://doi.org/10.1007/BF02551274
K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8
Gallant & White, There exists a neural network that does not make avoidable mistakes. IEEE 1988 International Conference on Neural Networks, vol. 1 (1988), p. 657–664
X. Gao, L.-M. Duan, Efficient representation of quantum many-body states with deep neural networks. Nat. Commun. 8, 662 (2017)
J. Chen, S. Cheng, H. Xie, L. Wang, T. Xiang, Equivalence of restricted Boltzmann machines and tensor network states. Phys. Rev. B 97, 085104 (2018). https://doi.org/10.1103/PhysRevB.97.085104
O. Sharir, A. Shashua, G. Carleo, Neural tensor contractions and the expressive power of deep neural quantum states. Phys. Rev. B 106, 205136 (2022). https://doi.org/10.1103/PhysRevB.106.205136
D. Wu, R. Rossi, F. Vicentini, G. Carleo, From tensor-network quantum states to tensorial recurrent neural networks. Phys. Rev. Res. 5, L032001 (2023). https://doi.org/10.1103/PhysRevResearch.5.L032001
C. Gauvin-Ndiaye, J. Tindall, J.R. Moreno, A. Georges, Mott transition and volume law entanglement with neural quantum states (2023). URL http://arxiv.org/abs/2311.05749
S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992). https://doi.org/10.1103/PhysRevLett.69.2863
F. Verstraete, J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions (2004). URL https://arxiv.org/abs/cond-mat/0407066. ArXiv:cond-mat/0407066
A. Sinibaldi, C. Giuliani, G. Carleo, F. Vicentini, Unbiasing time-dependent variational Monte Carlo by projected quantum evolution. Quantum 7, 1131 (2023)
M. Bukov, M. Schmitt, M. Dupont, Learning the ground state of a non-stoquastic quantum Hamiltonian in a rugged neural network landscape. SciPost Phys. 10, 147 (2021). https://doi.org/10.21468/SciPostPhys.10.6.147
C.-Y. Park, M.J. Kastoryano, Geometry of learning neural quantum states. Phys. Rev. Res. 2, 023232 (2020). https://doi.org/10.1103/PhysRevResearch.2.023232
T. Westerhout, N. Astrakhantsev, K.S. Tikhonov, M.I. Katsnelson, A.A. Bagrov, Generalization properties of neural network approximations to frustrated magnet ground states. Nat. Commun. 11, 1593 (2020). https://doi.org/10.1038/s41467-020-15402-w
D. Luo, J. Halverson, Infinite neural network quantum states: entanglement and training dynamics. Mach. Learn. Sci. Technol. 4, 025038 (2023). https://doi.org/10.1088/2632-2153/ace02f
K. Choo, T. Neupert, G. Carleo, Two-dimensional frustrated \({J}_{1}-{J}_{2}\) model studied with neural network quantum states. Phys. Rev. B 100, 125124 (2019). https://doi.org/10.1103/PhysRevB.100.125124
C. Fu et al., Lattice convolutional networks for learning ground states of quantum many-body systems (2022). URL http://arxiv.org/abs/2206.07370. ArXiv:2206.07370 [quant-ph]
M. Reh, M. Schmitt, M. Gärttner, Optimizing design choices for neural quantum states. Phys. Rev. B 107, 195115 (2023). https://doi.org/10.1103/PhysRevB.107.195115
A. Chen, M. Heyl, Efficient optimization of deep neural quantum states toward machine precision (2023). URL http://arxiv.org/abs/2302.01941
N. Astrakhantsev et al., Broken-symmetry ground states of the Heisenberg model on the pyrochlore lattice. Phys. Rev. X 11, 041021 (2021). https://doi.org/10.1103/PhysRevX.11.041021
Y. Nomura, A.S. Darmawan, Y. Yamaji, M. Imada, Restricted Boltzmann machine learning for solving strongly correlated quantum systems. Phys. Rev. B 96, 205152 (2017). https://doi.org/10.1103/PhysRevB.96.205152
D. Luo, B.K. Clark, Backflow transformations via neural networks for quantum many-body wave functions. Phys. Rev. Lett. 122, 226401 (2019). https://doi.org/10.1103/PhysRevLett.122.226401
J. Robledo Moreno, G. Carleo, A. Georges, J. Stokes, Fermionic wave functions from neural-network constrained hidden states. Proc. Natl. Acad. Sci. 119, e2122059119 (2022). https://doi.org/10.1073/pnas.2122059119
D. Pfau, J.S. Spencer, A.G.D.G. Matthews, W.M.C. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Phys. Rev. Res. 2, 033429 (2020). https://doi.org/10.1103/PhysRevResearch.2.033429
J. Hermann, Z. Schätzle, F. Noé, Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020). https://doi.org/10.1038/s41557-020-0544-y
D. Wu et al., Variational benchmarks for quantum many-body problems (2023). URL http://arxiv.org/abs/2302.04919
M. Schmitt, M. Heyl, Quantum many-body dynamics in two dimensions with artificial neural networks. Phys. Rev. Lett. 125, 100503 (2020). https://doi.org/10.1103/PhysRevLett.125.100503
M. Medvidović, D. Sels, Variational quantum dynamics of two-dimensional rotor models. PRX Quantum 4, 040302 (2023). https://doi.org/10.1103/PRXQuantum.4.040302
I.L. Gutiérrez, C.B. Mendl, Real time evolution with neural-network quantum states. Quantum 6, 627 (2022). https://doi.org/10.22331/q-2022-01-20-627
K. Donatella, Z. Denis, A.L. Boité, C. Ciuti, Dynamics with autoregressive neural quantum states: application to critical quench dynamics. Phys. Rev. A 108, 022210 (2023). https://doi.org/10.1103/PhysRevA.108.022210
M. Medvidović, G. Carleo, Classical variational simulation of the quantum approximate optimization algorithm. NPJ Quantum Inf. 7, 101 (2021)
G. Torlai et al., Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018). https://doi.org/10.1038/s41567-018-0048-5
J. Carrasquilla, G. Torlai, How to use neural networks to investigate quantum many-body physics. PRX Quantum 2, 040201 (2021). https://doi.org/10.1103/PRXQuantum.2.040201
J. Hermann et al., Ab initio quantum chemistry with neural-network wavefunctions. Nat. Rev. Chem. 7, 692–709 (2023). https://doi.org/10.1038/s41570-023-00516-8
H. Lange, A.V. de Walle, A. Abedinnia, A. Bohrdt, From architectures to applications: a review of neural quantum states (2024). URL http://arxiv.org/abs/2402.09402
J.W. Negele, H. Orland, Quantum Many-Particle Systems (Westview Press, Boulder, 1998)
X. Yuan, S. Endo, Q. Zhao, Y. Li, S.C. Benjamin, Theory of variational quantum simulation. Quantum 3, 191 (2019). https://doi.org/10.22331/q-2019-10-07-191
I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)
F. Becca, S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, Cambridge, 2017)
S. Brooks, A. Gelman, G. Jones, X.-L. Meng (eds.), Handbook of Markov Chain Monte Carlo (Chapman and Hall/CRC, Boca Raton, 2011)
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)
W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)
M. Newman, G. Barkema, Monte Carlo Methods in Statistical Physics-M (Clarendon Press, Oxford, 1999)
R.L. Strawderman, Monte Carlo methods in statistical physics. J. Am. Stat. Assoc. 96, 778–778 (2001). https://doi.org/10.1198/jasa.2001.s394
U. Wolff, Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361–364 (1989)
R.M. Neal, Handbook of Markov Chain Monte Carlo (Chapman and Hall/CRC, Boca Raton, 2011)
M.D. Hoffman, A. Gelman, The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2011)
B. Carpenter et al., Stan: a probabilistic programming language. J. Stat. Softw. 76, 1 (2017). https://doi.org/10.18637/jss.v076.i01
M. Betancourt, A conceptual introduction to Hamiltonian Monte Carlo (2017). URL http://arxiv.org/abs/1701.02434
T.D. Barrett, A. Malyshev, A.I. Lvovsky, Autoregressive neural-network wavefunctions for ab initio quantum chemistry. Nat. Mach. Intell. 4, 351–358 (2022)
M. Hibat-Allah, M. Ganahl, L.E. Hayward, R.G. Melko, J. Carrasquilla, Recurrent neural network wave functions. Phys. Rev. Res. 2, 023358 (2020). https://doi.org/10.1103/PhysRevResearch.2.023358
M. Hibat-Allah, E.M. Inack, R. Wiersema, R.G. Melko, J. Carrasquilla, Variational neural annealing. Nat. Mach. Intell. 3, 952–961 (2021)
S. Sorella, Green function Monte Carlo with stochastic reconfiguration. Phys. Rev. Lett. 80, 4558–4561 (1998). https://doi.org/10.1103/PhysRevLett.80.4558
S.I. Amari, Natural gradient works efficiently in learning. Neural Comput. 10, 251–276 (1998). https://doi.org/10.1162/089976698300017746
J. Stokes, J. Izaac, N. Killoran, G. Carleo, Quantum natural gradient. Quantum 4, 269 (2020)
J.C. Butcher, Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math. Soc. 3, 185–201 (1963)
J.C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, New York, 2008)
J. Martens, R. Grosse, Optimizing neural networks with Kronecker-factored approximate curvature (2015). URL http://arxiv.org/abs/1503.05671
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014). URL http://arxiv.org/abs/1412.6980
A. Graves, Generating sequences with recurrent neural networks (2013)
L. Hackl et al., Geometry of variational methods: dynamics of closed quantum systems. SciPost Phys. 9, 048 (2020)
A. Jacot, F. Gabriel, C. Hongler, Neural tangent kernel: convergence and generalization in neural networks (2018). URL http://arxiv.org/abs/1806.07572
G. Carleo, F. Becca, M. Schiró, M. Fabrizio, Localization and glassy dynamics of many-body quantum systems. Sci. Rep. 2, 243 (2012)
G. Carleo, L. Cevolani, L. Sanchez-Palencia, M. Holzmann, Unitary dynamics of strongly interacting Bose gases with the time-dependent variational Monte Carlo method in continuous space. Phys. Rev. X 7, 031026 (2017). https://doi.org/10.1103/PhysRevX.7.031026
K. Ido, T. Ohgoe, M. Imada, Time-dependent many-variable variational Monte Carlo method for nonequilibrium strongly correlated electron systems. Phys. Rev. B 92, 245106 (2015). https://doi.org/10.1103/PhysRevB.92.245106
G. Torlai, R.G. Melko, Latent space purification via neural density operators. Phys. Rev. Lett. 120, 240503 (2018). https://doi.org/10.1103/PhysRevLett.120.240503
G. Torlai et al., Integrating neural networks with a quantum simulator for state reconstruction. Phys. Rev. Lett. 123, 230504 (2019). https://doi.org/10.1103/PhysRevLett.123.230504
Y. Nomura, Helping restricted Boltzmann machines with quantum-state representation by restoring symmetry. J. Phys. Condens. Matter 33, 174003 (2021). https://doi.org/10.1088/1361-648X/abe268
J. Stokes, J. Robledo Moreno, E.A. Pnevmatikakis, G. Carleo, Phases of two-dimensional spinless lattice fermions with first-quantized deep neural-network quantum states. Phys. Rev. B 102, 205122 (2020). https://doi.org/10.1103/PhysRevB.102.205122. (Publisher: American Physical Society)
C. Roth, A.H. MacDonald, Group convolutional neural networks improve quantum state accuracy (2021). URL http://arxiv.org/abs/2104.05085. ArXiv:2104.05085 [cond-mat, physics:quant-ph]
K. Choo, G. Carleo, N. Regnault, T. Neupert, Symmetries and many-body excitations with neural-network quantum states. Phys. Rev. Lett. 121, 167204 (2018). https://doi.org/10.1103/PhysRevLett.121.167204
T. Vieijra et al., Restricted Boltzmann machines for quantum states with non-abelian or anyonic symmetries. Phys. Rev. Lett. 124, 097201 (2020). https://doi.org/10.1103/PhysRevLett.124.097201
T. Vieijra, J. Nys, Many-body quantum states with exact conservation of non-abelian and lattice symmetries through variational Monte Carlo. Phys. Rev. B 104, 045123 (2021). https://doi.org/10.1103/PhysRevB.104.045123
A. Valenti, E. Greplova, N.H. Lindner, S.D. Huber, Correlation-enhanced neural networks as interpretable variational quantum states. Phys. Rev. Res. 4, L012010 (2022). https://doi.org/10.1103/PhysRevResearch.4.L012010
H. Saito, Solving the Bose–Hubbard model with machine learning. J. Phys. Soc. Jpn. 86, 093001 (2017)
H. Saito, M. Kato, Machine learning technique to find quantum many-body ground states of bosons on a lattice. J. Phys. Soc. Jpn. 87, 014001 (2018)
G. Pescia, J. Han, A. Lovato, J. Lu, G. Carleo, Neural-network quantum states for periodic systems in continuous space. Phys. Rev. Res. 4, 023138 (2022). https://doi.org/10.1103/PhysRevResearch.4.023138
C. Roth, Iterative retraining of quantum spin models using recurrent neural networks (2020). URL http://arxiv.org/abs/2003.06228
O. Sharir, Y. Levine, N. Wies, G. Carleo, A. Shashua, Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Phys. Rev. Lett. 124, 020503 (2020). https://doi.org/10.1103/PhysRevLett.124.020503
S. Morawetz, I.J.S. De Vlugt, J. Carrasquilla, R.G. Melko, U(1)-symmetric recurrent neural networks for quantum state reconstruction. Phys. Rev. A 104, 012401 (2021). https://doi.org/10.1103/PhysRevA.104.012401
M. Hibat-Allah, R.G. Melko, J. Carrasquilla, Supplementing recurrent neural network wave functions with symmetry and annealing to improve accuracy (2022). URL http://arxiv.org/abs/2207.14314
M. Hibat-Allah, R.G. Melko, J. Carrasquilla, Investigating topological order using recurrent neural networks. Phys. Rev. B 108, 075152 (2023). https://doi.org/10.1103/PhysRevB.108.075152
S. Czischek, M.S. Moss, M. Radzihovsky, E. Merali, R.G. Melko, Data-enhanced variational Monte Carlo simulations for Rydberg atom arrays. Phys. Rev. B 105, 205108 (2022). https://doi.org/10.1103/PhysRevB.105.205108
T. Mendes-Santos et al., Wave function network description and Kolmogorov complexity of quantum many-body systems (2023). URL http://arxiv.org/abs/2301.13216
H. Lange, F. Döschl, J. Carrasquilla, A. Bohrdt, Neural network approach to quasiparticle dispersions in doped antiferromagnets (2023). URL http://arxiv.org/abs/2310.08578
T.D. Barrett, A. Malyshev, A.I. Lvovsky, Autoregressive neural-network wavefunctions for ab initio quantum chemistry. Nat. Mach. Intell. 4, 351–358 (2022)
A. Malyshev, J.M. Arrazola, A.I. Lvovsky, Autoregressive neural quantum states with quantum number symmetries (2023). URL http://arxiv.org/abs/2310.04166
D.-L. Deng, X. Li, S. Das Sarma, Quantum entanglement in neural network states. Phys. Rev. X 7, 021021 (2017). https://doi.org/10.1103/PhysRevX.7.021021
Y. Huang, J.E. Moore, Neural network representation of tensor network and chiral states. Phys. Rev. Lett. 127, 170601 (2021). https://doi.org/10.1103/PhysRevLett.127.170601
F.B. Trigueros, T. Mendes-Santos, M. Heyl, Mean-field theories are simple for neural quantum states (2023). URL http://arxiv.org/abs/2308.10934
M. Ruggeri, S. Moroni, M. Holzmann, Nonlinear network description for many-body quantum systems in continuous space. Phys. Rev. Lett. 120, 205302 (2018). https://doi.org/10.1103/PhysRevLett.120.205302. (Publisher: American Physical Society)
J.S. Spencer, D. Pfau, A. Botev, W.M.C. Foulkes, Better, faster fermionic neural networks (2020). URL http://arxiv.org/abs/2011.07125. ArXiv:2011.07125 [physics]
M.T. Entwistle, Z. Schätzle, P.A. Erdman, J. Hermann, F. Noé, Electronic excited states in deep variational Monte Carlo. Nat. Commun. 14, 274 (2023). https://doi.org/10.1038/s41467-022-35534-5
I. von Glehn, J.S. Spencer, D. Pfau, A self-attention ansatz for ab-initio quantum chemistry (2022). URL https://arxiv.org/abs/2211.13672. ArXiv:2211.13672
G. Cassella et al., Discovering quantum phase transitions with fermionic neural networks. Phys. Rev. Lett. 130, 036401 (2023). https://doi.org/10.1103/PhysRevLett.130.036401
G. Pescia, J. Nys, J. Kim, A. Lovato, G. Carleo, Message-passing neural quantum states for the homogeneous electron gas (2023). URL http://arxiv.org/abs/2305.07240
J. Kim et al., Neural-network quantum states for ultra-cold fermi gases (2023). URL http://arxiv.org/abs/2305.08831
W.T. Lou et al., Neural wave functions for superfluids (2023). URL http://arxiv.org/abs/2305.06989
A. Lovato, C. Adams, G. Carleo, N. Rocco, Hidden-nucleons neural-network quantum states for the nuclear many-body problem. Phys. Rev. Res. 4, 043178 (2022). https://doi.org/10.1103/PhysRevResearch.4.043178
A. Gnech, B. Fore, A. Lovato, Distilling the essential elements of nuclear binding via neural-network quantum states (2023). URL http://arxiv.org/abs/2308.16266
B. Fore, J.M. Kim, G. Carleo, M. Hjorth-Jensen, A. Lovato, Dilute neutron star matter from neural-network quantum states (2022). URL http://arxiv.org/abs/2212.04436
M. Rigo, B. Hall, M. Hjorth-Jensen, A. Lovato, F. Pederiva, Solving the nuclear pairing model with neural network quantum states. Phys. Rev. E 107, 025310 (2023). https://doi.org/10.1103/PhysRevE.107.025310
C. Adams, G. Carleo, A. Lovato, N. Rocco, Variational Monte Carlo calculations of \(a\le 4\) nuclei with an artificial neural-network correlator ansatz. Phys. Rev. Lett. 127, 022502 (2021). https://doi.org/10.1103/PhysRevLett.127.022502
Q. Sun et al., Recent developments in the PySCF program package. J. Chem. Phys. 153, 024109 (2020). https://doi.org/10.1063/5.0006074
Q. Sun et al., Pyscf: the python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 8, e1340 (2018). https://doi.org/10.1002/wcms.1340
Q. Sun, Libcint: an efficient general integral library for Gaussian basis functions. J. Comput. Chem. 36, 1664–1671 (2015). https://doi.org/10.1002/jcc.23981
R. Xia, S. Kais, Quantum machine learning for electronic structure calculations. Nat. Commun. 9, 4195 (2018)
K. Choo, A. Mezzacapo, G. Carleo, Fermionic neural-network states for ab-initio electronic structure. Nat. Commun. 11, 2368 (2020)
P.-J. Yang, M. Sugiyama, K. Tsuda, T. Yanai, Artificial neural networks applied as molecular wave function solvers. J. Chem. Theory Comput. 16, 3513–3529 (2020). https://doi.org/10.1021/acs.jctc.9b01132
N. Yoshioka, W. Mizukami, F. Nori, Solving quasiparticle band spectra of real solids using neural-network quantum states. Commun. Phys. 4, 106 (2021). https://doi.org/10.1038/s42005-021-00609-0
Y. Rath, G.H. Booth, Framework for efficient ab initio electronic structure with gaussian process states. Phys. Rev. B 107, 205119 (2023). https://doi.org/10.1103/PhysRevB.107.205119
S.H. Sureshbabu, M. Sajjan, S. Oh, S. Kais, Implementation of quantum machine learning for electronic structure calculations of periodic systems on quantum computing devices. J. Chem. Inf. Model. 61, 2667–2674 (2021). https://doi.org/10.1021/acs.jcim.1c00294
T. Zhao, J. Stokes, S. Veerapaneni, Scalable neural quantum states architecture for quantum chemistry. Mach. Learn. Sci. Technol. 4, 025034 (2023). https://doi.org/10.1088/2632-2153/acdb2f
K. Inui, Y. Kato, Y. Motome, Determinant-free fermionic wave function using feed-forward neural networks. Phys. Rev. Res. 3, 043126 (2021). https://doi.org/10.1103/PhysRevResearch.3.043126
J. Nys, G. Carleo, Variational solutions to fermion-to-qubit mappings in two spatial dimensions. Quantum 6, 833 (2022). https://doi.org/10.22331/q-2022-10-13-833
J.R. Moreno, J. Cohn, D. Sels, M. Motta, Enhancing the expressivity of variational neural, and hardware-efficient quantum states through orbital rotations (2023). URL http://arxiv.org/abs/2302.11588
J. Hubbard, B.H. Flowers, Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 276, 238–257 (1963). https://doi.org/10.1098/rspa.1963.0204
M. Qin et al., Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020). https://doi.org/10.1103/PhysRevX.10.031016
N. Baldelli, B. Kloss, M. Fishman, A. Wietek, Fragmented superconductivity in the Hubbard model as solitons in Ginzburg–Landau theory (2023). URL http://arxiv.org/abs/2307.11820
A. Wietek et al., Mott insulating states with competing orders in the triangular lattice Hubbard model. Phys. Rev. X 11, 041013 (2021). https://doi.org/10.1103/PhysRevX.11.041013
B.-X. Zheng et al., Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017)
N. Lanatà, T.-H. Lee, Y.-X. Yao, V. Dobrosavljević, Emergent Bloch excitations in Mott matter. Phys. Rev. B 96, 195126 (2017). https://doi.org/10.1103/PhysRevB.96.195126
P. Jordan, E. Wigner, Über das paulische äquivalenzverbot. Zeit. Phys 47, 631–651 (1928). https://doi.org/10.1007/BF01331938
R. Jastrow, Many-body problem with strong forces. Phys. Rev. 98, 1479–1484 (1955). https://doi.org/10.1103/PhysRev.98.1479
S. Humeniuk, Y. Wan, L. Wang, Autoregressive neural Slater–Jastrow ansatz for variational Monte Carlo simulation. SciPost Phys. 14, 171 (2023). https://doi.org/10.21468/SciPostPhys.14.6.171
E. Wigner, F. Seitz, On the constitution of metallic sodium. ii. Phys. Rev. 46, 509–524 (1934). https://doi.org/10.1103/PhysRev.46.509
R.P. Feynman, Atomic theory of the two-fluid model of liquid helium. Phys. Rev. 94, 262–277 (1954). https://doi.org/10.1103/PhysRev.94.262
R.P. Feynman, M. Cohen, Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189–1204 (1956). https://doi.org/10.1103/PhysRev.102.1189
Y. Kwon, D.M. Ceperley, R.M. Martin, Effects of three-body and backflow correlations in the two-dimensional electron gas. Phys. Rev. B 48, 12037–12046 (1993). https://doi.org/10.1103/PhysRevB.48.12037
Y. Kwon, D.M. Ceperley, R.M. Martin, Effects of backflow correlation in the three-dimensional electron gas: quantum Monte Carlo study. Phys. Rev. B 58, 6800–6806 (1998). https://doi.org/10.1103/PhysRevB.58.6800
T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957). https://doi.org/10.1002/cpa.3160100201
D. Pfau, S. Axelrod, H. Sutterud, I. von Glehn, J.S. Spencer, Natural quantum Monte Carlo computation of excited states (2023). URL http://arxiv.org/abs/2308.16848
D. Luo, A.P. Reddy, T. Devakul, L. Fu, Artificial intelligence for artificial materials: moiré atom (2023). URL http://arxiv.org/abs/2303.08162
L.F. Tocchio, F. Becca, A. Parola, S. Sorella, Role of backflow correlations for the nonmagnetic phase of the \(t-{t}^{{^{\prime }}}\) Hubbard model. Phys. Rev. B 78, 041101 (2008). https://doi.org/10.1103/PhysRevB.78.041101
L.F. Tocchio, F. Becca, C. Gros, Backflow correlations in the Hubbard model: an efficient tool for the study of the metal-insulator transition and the large-\(u\) limit. Phys. Rev. B 83, 195138 (2011). https://doi.org/10.1103/PhysRevB.83.195138
S.E. Barnes, New method for the Anderson model. J. Phys. F Met. Phys. 6, 1375–1383 (1976). https://doi.org/10.1088/0305-4608/6/7/018
S.E. Barnes, New method for the Anderson model II. The u=0 limit. J. Phys. F Met. Phys. 7, 2637–2647 (1977). https://doi.org/10.1088/0305-4608/7/12/022
G. Kotliar, A.E. Ruckenstein, New functional integral approach to strongly correlated fermi systems: The Qutzwiller approximation as a saddle point. Phys. Rev. Lett. 57, 1362–1365 (1986). https://doi.org/10.1103/PhysRevLett.57.1362
G. Kotliar, The large n expansion and the strong correlation problem, in Strongly Interacting Fermions and High-Tc Superconductivity, Les Houches, Session LVI. ed. by B. Doucot, J. Zinn-Justin (Elsevier, Amsterdam, 1995), p.197
T. Li, P. Wölfle, P.J. Hirschfeld, Spin-rotation-invariant slave-boson approach to the Hubbard model. Phys. Rev. B 40, 6817–6821 (1989). https://doi.org/10.1103/PhysRevB.40.6817
R. Frésard, P. Wölfle, Unified slave boson representation of spin and charge degrees of freedom for strongly correlated fermi systems. Int. J. Mod. Phys. B 06, 685–704 (1992). https://doi.org/10.1142/S0217979292000414
C. Jayaprakash, H.R. Krishnamurthy, S. Sarker, Mean-field theory for the t-j model. Phys. Rev. B 40, 2610–2613 (1989). https://doi.org/10.1103/PhysRevB.40.2610
C.L. Kane, P.A. Lee, T.K. Ng, B. Chakraborty, N. Read, Mean-field theory of the spiral phases of a doped antiferromagnet. Phys. Rev. B 41, 2653–2656 (1990). https://doi.org/10.1103/PhysRevB.41.2653
S. Florens, A. Georges, Quantum impurity solvers using a slave rotor representation. Phys. Rev. B 66, 165111 (2002). https://doi.org/10.1103/PhysRevB.66.165111
S. Florens, A. Georges, Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions. Phys. Rev. B 70, 035114 (2004). https://doi.org/10.1103/PhysRevB.70.035114
L. de Medici, A. Georges, S. Biermann, Orbital-selective Mott transition in multiband systems: slave-spin representation and dynamical mean-field theory. Phys. Rev. B 72, 205124 (2005). https://doi.org/10.1103/PhysRevB.72.205124
F. Lechermann, A. Georges, G. Kotliar, O. Parcollet, Rotationally invariant slave-boson formalism and momentum dependence of the quasiparticle weight. Phys. Rev. B 76, 155102 (2007). https://doi.org/10.1103/PhysRevB.76.155102
N. Lanatà, T.-H. Lee, Y.-X. Yao, V. Dobrosavljević, Emergent Bloch excitations in Mott matter. Phys. Rev. B 96, 195126 (2017). https://doi.org/10.1103/PhysRevB.96.195126
M.S. Frank et al., Quantum embedding description of the Anderson lattice model with the ghost Qutzwiller approximation. Phys. Rev. B 104, L081103 (2021). https://doi.org/10.1103/PhysRevB.104.L081103
D. Guerci, M. Capone, M. Fabrizio, Exciton Mott transition revisited. Phys. Rev. Mater. 3, 054605 (2019). https://doi.org/10.1103/PhysRevMaterials.3.054605
D. Guerci, Beyond simple variational approaches to strongly correlated electron systems. Ph.D. thesis, International School for Advanced Studies (SISSA) (2019). URL https://iris.sissa.it/handle/20.500.11767/103994#.YZBFIC9w2Wg
Y.-H. Zhang, S. Sachdev, From the pseudogap metal to the fermi liquid using ancilla qubits. Phys. Rev. Res. 2, 023172 (2020). https://doi.org/10.1103/PhysRevResearch.2.023172
A. Nikolaenko, M. Tikhanovskaya, S. Sachdev, Y.-H. Zhang, Small to large fermi surface transition in a single-band model using randomly coupled ancillas. Phys. Rev. B 103, 235138 (2021). https://doi.org/10.1103/PhysRevB.103.235138
P. Coleman, New approach to the mixed-valence problem. Phys. Rev. B 29, 3035–3044 (1984). https://doi.org/10.1103/PhysRevB.29.3035
D. Thouless, Stability conditions and nuclear rotations in the Hartree-Fock theory. Nucl. Phys. 21, 225–232 (1960)
R. Verdel, M. Schmitt, Y.-P. Huang, P. Karpov, M. Heyl, Variational classical networks for dynamics in interacting quantum matter. Phys. Rev. B 103, 165103 (2021)
M. Schmitt, M. Heyl, Quantum dynamics in transverse-field Ising models from classical networks. SciPost Phys. 4, 013 (2018)
P. Karpov, R. Verdel, Y.-P. Huang, M. Schmitt, M. Heyl, Disorder-free localization in an interacting 2D lattice gauge theory. Phys. Rev. Lett. 126, 130401 (2021). https://doi.org/10.1103/PhysRevLett.126.130401
T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning. Ann. Stat. 36, 1171–1220 (2008). https://doi.org/10.1214/009053607000000677.full
M. Schmitt, M.M. Rams, J. Dziarmaga, M. Heyl, W.H. Zurek, Quantum phase transition dynamics in the two-dimensional transverse-field Ising model. Sci. Adv. 8, 6850 (2022). https://doi.org/10.1126/sciadv.abl6850
D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, A. Browaeys, Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018)
H. Labuhn et al., Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016)
E. Guardado-Sanchez et al., Probing the quench dynamics of antiferromagnetic correlations in a 2D quantum Ising spin system. Phys. Rev. X 8, 021069 (2018). https://doi.org/10.1103/PhysRevX.8.021069
Y. Kim et al., Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023)
W.H. Zurek, Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985)
W. Zurek, Cosmological experiments in condensed matter systems. Phys. Rep. 276, 177–221 (1996)
T. Mendes-Santos, M. Schmitt, M. Heyl, Highly resolved spectral functions of two-dimensional systems with neural quantum states. Phys. Rev. Lett. 131, 046501 (2023). https://doi.org/10.1103/PhysRevLett.131.046501
H. Burau, M. Heyl, Unitary long-time evolution with quantum renormalization groups and artificial neural networks. Phys. Rev. Lett. 127, 050601 (2021). https://doi.org/10.1103/PhysRevLett.127.050601
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–44 (2015)
B. Josephson, Possible new effects in superconductive Tunnelling. Phys. Lett. 1, 251–253 (1962)
B. Josephson, Supercurrents through barriers. Adv. Phys. 14, 419–451 (1965)
P. Martinoli, C. Leemann, Two dimensional Josephson junction arrays. J. Low Temp. Phys. 118, 699–731 (2000). https://doi.org/10.1023/A:1004651730459
N. Vogt et al., One-dimensional Josephson junction arrays: lifting the Coulomb blockade by depinning. Phys. Rev. B 92, 045435 (2015). https://doi.org/10.1103/PhysRevB.92.045435
A.F. Kockum, F. Nori, Quantum bits with Josephson junctions. Springer Ser. Mater. Sci. 286, 703–741 (2019). https://doi.org/10.1007/978-3-030-20726-7_17. arXiv:1908.09558
C. Berke, E. Varvelis, S. Trebst, A. Altland, D.P. DiVincenzo, Transmon platform for quantum computing challenged by chaotic fluctuations. Nat. Commun. 13, 2495 (2022). https://doi.org/10.1038/s41467-022-29940-y
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2012)
B. Jónsson, B. Bauer, G. Carleo, Neural-network states for the classical simulation of quantum computing (2018). URL http://arxiv.org/abs/1808.05232. ArXiv:1808.05232
E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm (2014). URL http://arxiv.org/abs/1411.4028
E. Farhi, A.W. Harrow, Quantum supremacy through the quantum approximate optimization algorithm (2016). URL http://arxiv.org/abs/1602.07674
M.S. Moss et al., Enhancing variational monte carlo using a programmable quantum simulator (2023). URL http://arxiv.org/abs/2308.02647
E.R. Bennewitz, F. Hopfmueller, B. Kulchytskyy, J. Carrasquilla, P. Ronagh, Neural error mitigation of near-term quantum simulations. Nat. Mach. Intell. 4, 618–624 (2022)
A. Vaswani et al., Attention is all you need (2017). URL http://arxiv.org/abs/1706.03762
D. Kochkov, B.K. Clark, Variational optimization in the AI era: Computational graph states and supervised wave-function optimization (2018). URL http://arxiv.org/abs/1811.12423
D. Luo, J. Halverson, Infinite neural network quantum states: entanglement and training dynamics. Mach. Learn. Sci. Technol. 4, 025038 (2023). https://doi.org/10.1088/2632-2153/ace02f
D. Zgid, M. Nooijen, The density matrix renormalization group self-consistent field method: orbital optimization with the density matrix renormalization group method in the active space. J. Comput. Phys. 128, 144116 (2008)
D. Ghosh, J. Hachmann, T. Yanai, G.K.-L. Chan, Orbital optimization in the density matrix renormalization group, with applications to polyenes and \(\beta\)-carotene. J. Comput. Phys. 128, 144117 (2008). https://doi.org/10.1063/1.2883976
S. Wouters, D. Van Neck, The density matrix renormalization group for ab initio quantum chemistry. Eur. Phys. J. 68, 272 (2014)
Y. Ma, S. Knecht, S. Keller, M. Reiher, Second-order self-consistent-field density-matrix renormalization group. J. Chem. Theory Comput. 13, 2533–2549 (2017). https://doi.org/10.1021/acs.jctc.6b01118
A.-K. Wu, M.T. Fishman, J.H. Pixley, E.M. Stoudenmire, Disentangling interacting systems with fermionic Gaussian circuits: application to the single impurity Anderson model (2022). URL http://arxiv.org/abs/2212.09798
D. Luo, Z. Chen, J. Carrasquilla, B.K. Clark, Autoregressive neural network for simulating open quantum systems via a probabilistic formulation (2020). URL http://arxiv.org/abs/2009.05580
O. Dugan, P.Y. Lu, R. Dangovski, D. Luo, M. Soljačić, Q-flow: generative modeling for differential equations of open quantum dynamics with normalizing flows (2023). URL http://arxiv.org/abs/2302.12235
Acknowledgements
M. M. and J. R. M acknowledge support from the CCQ graduate fellowship in computational quantum physics. The Flatiron Institute is a division of the Simons Foundation. The authors acknowledge useful discussions with Antoine Georges, Christopher Roth, Schuyler Moss, Agnes Valenti, Alev Orfi, Anna Dawid and Anirvan Sengupta.
Funding
Simons Foundation (Matija Medvidović, Javier Robledo Moreno).
Author information
Authors and Affiliations
Corresponding author
Appendix A: Derivation of the projected equations of motion
Appendix A: Derivation of the projected equations of motion
In Eq. 15 in the main text, a simple update scheme for variational parameters is presented:
where \(|\Psi _\theta \rangle = |\psi \rangle / \sqrt{\langle {\psi }|{\psi } \rangle }\) is the normalized version of our variational state of choice, turning the proportionality sign in Eq. 15 into an equality. We note that the differential version of Eq. A1, \(\frac{\textrm{d}}{\textrm{d}\tau } |\Psi _\theta \rangle = - H |\Psi _\theta \rangle\) is known as the Bloch equation and can serve as an equivalent starting point for the following analysis.
In this appendix, we derive the projected equations of motion given in Eq. 16 for variational parameters \(\theta\). We note that the following derivation plays out almost identically for the case of real-time evolution, upon substitution \(\delta \tau \rightarrow i \delta t\). Borrowing notational conventions set up in Sect. 2, we begin by Taylor-expanding both sides of Eq. 15 in small parameters:
where we exploit the following chain of identities
to construct a convenient representation of derivative operators
on the variational manifold \({\mathcal {M}} _\psi\). Truncating the Taylor expansions in Eq. A2, we get
and reduce the original equation to finding \({\dot{\theta }} ^\mu = {{\,\textrm{argmin}\,}}\Vert \sum _\mu {\mathcal {D}} _\mu {\dot{\theta }} ^\mu - H\Vert\). To build a convenient way of solving for \({\dot{\theta }}\), we left-multiply by \(\langle \Psi _\theta | {\mathcal {D}} ^\dagger _\nu\) and relabel indices:
yielding a linear system.
Finally, we need to unpack the fact that we usually do not have access to the full normalized state \(|\Psi \rangle\). Instead, we need to substitute \(|\Psi \rangle \mapsto |\psi \rangle / \sqrt{\langle {\psi } | {\psi } \rangle }\). The expectation value changes trivially into the form that can be evaluated using Monte Carlo sampling, as discussed in the main text. However, variational derivative operators \({\mathcal {D}} _\mu\) pick up an extra term because
assuming that \(|\partial _\mu \psi _\theta \rangle = \partial _\mu |\psi _\theta \rangle\) and that all of the variational parameters \(\theta\) are real: \(\theta \in \mathbbm {R} ^P\). Therefore, we are free to substitute \({\mathcal {D}}_\mu \mapsto {\mathcal {O}}_\mu - \text{ Re }\left\langle {\mathcal {O}}_\mu \right\rangle\) in Eq. A6, resulting in
which is identical to expressions in Eq. 16 in the main text.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Medvidović, M., Moreno, J.R. Neural-network quantum states for many-body physics. Eur. Phys. J. Plus 139, 631 (2024). https://doi.org/10.1140/epjp/s13360-024-05311-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-024-05311-y