Abstract
In this paper, we study the synergy among the future accelerator (T2HK), future atmospheric (ICAL) and future reactor (JUNO) neutrino experiments to determine the neutrino mass ordering. T2HK can measure the mass ordering only for favorable values of \(\delta _{\textrm{CP}}\), whereas the mass ordering sensitivity of JUNO is dependent on the energy resolution. Our results show that with a combination of T2HK, ICAL and JUNO one can have a mass ordering sensitivity of 7.2 \(\sigma \) even for the unfavorable value of \(\delta _{\textrm{CP}} = 0^\circ \) for T2HK and most conservative value of JUNO energy resolution of 5\(\%/\sqrt{E(\text {MeV})}\). The synergy mainly comes because different oscillation channels prefer different values of \(|\Delta m_{31}^2|\) in the fit when the mass-ordering \(\chi ^2\) is minimized. In this context, we also study: (i) effect of varying energy resolution of JUNO, (ii) the effect of longer run-time of ICAL, (iii) effect of different true values of \(\theta _{23}\) and (iv) effect of octant degeneracy in the determination of neutrino mass ordering.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
No data associated in the manuscript.
Change history
02 June 2023
A Correction to this paper has been published: https://doi.org/10.1140/epjp/s13360-023-04129-4
Notes
For the detector of course there will be running costs such as maintaining the magnetic field, electronics and power supply for cooling.
References
M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, Universe 7(12), 459 (2021). https://doi.org/10.3390/universe7120459
K. Abe et al., Phys. Rev. D 97(7), 072001 (2018). https://doi.org/10.1103/PhysRevD.97.072001
K. Abe et al., Phys. Rev. D 103(11), 112008 (2021). https://doi.org/10.1103/PhysRevD.103.112008
NOvA Collaboration, M. A. Acero et al., Phys. Rev. D 106, 032004 (2022)
I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, JHEP 09, 178 (2020). https://doi.org/10.1007/JHEP09(2020)178
C. Bronner. Recent results and future prospects from T2K,Talk at the Neutrino 2022, 1st June 2022
J. Hartnell, New results from the NO\(\nu \)A Experiment, Talk at the Neutrino 2022, 1st June 2022
K. Abe et al., PTEP 6, 063C01 (2018). https://doi.org/10.1093/ptep/pty044
DUNE Collaboration, B. Abi et al., (2020). https://doi.org/10.48550/arXiv.2002.03005
S. Ahmed et al., Pramana 88(5), 79 (2017). https://doi.org/10.1007/s12043-017-1373-4
S. Adrian-Martinez et al., J. Phys. G 43(8), 084001 (2016). https://doi.org/10.1088/0954-3899/43/8/084001
M.G. Aartsen et al., J. Phys. G 44(5), 054006 (2017). https://doi.org/10.1088/1361-6471/44/5/054006
F. An et al., J. Phys. G 43(3), 030401 (2016). https://doi.org/10.1088/0954-3899/43/3/030401
M.G. Aartsen et al., Phys. Rev. D 101(3), 032006 (2020). https://doi.org/10.1103/PhysRevD.101.032006
C.T. Nhan, Neutrino mass ordering determination through a combined JUNO and KM3NeT/ORCA analysis, Talk at the XIX International Workshop on Neutrino Telescopes, 18–26 Feb 2021
M. Blennow, T. Schwetz, JHEP 09, 089 (2013). https://doi.org/10.1007/JHEP09(2013)089
Y. Wang, Daya Bay II: current status and future plan. Talk at Daya Bay II meeting. IHEP Jan 11 (2013)
S. Fukasawa, M. Ghosh, O. Yasuda, Nucl. Phys. B 918, 337 (2017). https://doi.org/10.1016/j.nuclphysb.2017.02.008
K. Chakraborty, S. Goswami, C. Gupta, T. Thakore, JHEP 05, 137 (2019). https://doi.org/10.1007/JHEP05(2019)137
ESSnuSB Collaboration, A. Alekou et al., Eur. Phys. J. C 81, 1130 (2021)
S. Cao, A. Nath, T.V. Ngoc, P.T. Quyen, N.T. Van Hong, N.K. Francis, Phys. Rev. D 103(11), 112010 (2021). https://doi.org/10.1103/PhysRevD.103.112010
V. Barger, A. Bhattacharya, A. Chatterjee, R. Gandhi, D. Marfatia, M. Masud, Phys. Rev. D 89(1), 011302 (2014). https://doi.org/10.1103/PhysRevD.89.011302
V. Barger, A. Bhattacharya, A. Chatterjee, R. Gandhi, D. Marfatia, M. Masud, Int. J. Mod. Phys. A 31(07), 1650020 (2016). https://doi.org/10.1142/S0217751X16500202
M. Blennow, E. Fernandez-Martinez, T. Ota, S. Rosauro-Alcaraz, Eur. Phys. J. C 80(3), 190 (2020). https://doi.org/10.1140/epjc/s10052-020-7761-9
S. Choubey, M. Ghosh, D. Raikwal, (2022). https://doi.org/10.48550/arXiv.2207.04784
M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara, S. Midorikawa, Phys. Rev. D 92(2), 023004 (2015). https://doi.org/10.1103/PhysRevD.92.023004
C. Andreopoulos et al., Nucl. Instrum. Methods A 614, 87 (2010). https://doi.org/10.1016/j.nima.2009.12.009
A. Chatterjee, K.K. Meghna, K. Rawat, T. Thakore, V. Bhatnagar, R. Gandhi, D. Indumathi, N.K. Mondal, N. Sinha, JINST 9, P07001 (2014). https://doi.org/10.1088/1748-0221/9/07/P07001
M.M. Devi, A. Ghosh, D. Kaur, L.S. Mohan, S. Choubey, A. Dighe, D. Indumathi, S. Kumar, M.V.N. Murthy, M. Naimuddin, JINST 8, P11003 (2013). https://doi.org/10.1088/1748-0221/8/11/P11003
M.M. Devi, T. Thakore, S.K. Agarwalla, A. Dighe, JHEP 10, 189 (2014). https://doi.org/10.1007/JHEP10(2014)189
L.S. Mohan, D. Indumathi, Eur. Phys. J. C 77(1), 54 (2017). https://doi.org/10.1140/epjc/s10052-017-4608-0
A. Ghosh, T. Thakore, S. Choubey, JHEP 04, 009 (2013). https://doi.org/10.1007/JHEP04(2013)009
P. Huber, M. Lindner, W. Winter, Comput. Phys. Commun. 167, 195 (2005). https://doi.org/10.1016/j.cpc.2005.01.003
P. Huber, J. Kopp, M. Lindner, M. Rolinec, W. Winter, Comput. Phys. Commun. 177, 432 (2007). https://doi.org/10.1016/j.cpc.2007.05.004
S. Choubey, P. Roy, Phys. Rev. D 73, 013006 (2006). https://doi.org/10.1103/PhysRevD.73.013006
R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta, S.U. Sankar, S. Shalgar, Phys. Rev. D 76, 073012 (2007). https://doi.org/10.1103/PhysRevD.76.073012
V. Barger, D. Marfatia, K. Whisnant, Phys. Rev. D 65, 073023 (2002). https://doi.org/10.1103/PhysRevD.65.073023
S. Prakash, S.K. Raut, S.U. Sankar, Phys. Rev. D 86, 033012 (2012). https://doi.org/10.1103/PhysRevD.86.033012
M. Ghosh, P. Ghoshal, S. Goswami, N. Nath, S.K. Raut, Phys. Rev. D 93(1), 013013 (2016). https://doi.org/10.1103/PhysRevD.93.013013
Acknowledgements
This work is performed by the members of the INO-ICAL collaboration. We thank to the members of the INO-ICAL collaboration for their valuable comments and constructive inputs. We thank A. Dighe, S. Goswami for useful discussion and valuable comments during the INO analysis meetings. The authors also sincerely thank the ICAL internal referees, Amol Dighe and D. Indumathi for their careful reading of the manuscript and for providing useful suggestions. Authors extend sincere thanks to Suprabh Prakash for providing the .glb file for JUNO and for useful discussions regarding the JUNO experiment. The HRI cluster computing facility (http://cluster.hri.res.in) is gratefully acknowledged. MG acknowledges Ramanujan Fellowship of SERB, Govt. of India, through grant no: RJF/2020/000082. This project has received funding/support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement No 860881-HIDDeN.
Author information
Authors and Affiliations
Corresponding author
Additional information
The original online version of this article was revised to correct second author name to Sandhya Choubey.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Raikwal, D., Choubey, S. & Ghosh, M. Determining neutrino mass ordering with ICAL, JUNO and T2HK. Eur. Phys. J. Plus 138, 110 (2023). https://doi.org/10.1140/epjp/s13360-023-03697-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-023-03697-9