Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Benatti, R. Floreanini, M. Piani, Phys. Rev. Lett. 91, 070402 (2003)

    Article  ADS  Google Scholar 

  2. H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  3. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  4. S.L. Braunstein, A. Mann, Phys. Rev. A 51, R1727 (1995)

    Article  ADS  Google Scholar 

  5. F. Caruso, V. Giovannetti, G.M. Palma, Phys. Rev. Lett. 104, 020503 (2010)

    Article  ADS  Google Scholar 

  6. N. Sehati, M.K. Tavassoly, Quantum Inf. Proc. 16, 193 (2017)

    Article  ADS  Google Scholar 

  7. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  8. A. Harrow, P. Hayden, D. Leung, Phys. Rev. Lett. 92, 187901 (2004)

    Article  ADS  Google Scholar 

  9. T. Richter, W. Vogel, Phys. Rev. A 76, 053835 (2007)

    Article  ADS  Google Scholar 

  10. M. Murao, D. Jonathan, M. Plenio, V. Vedral, Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  11. N.-R. Zhou, H.-L. Cheng, X.-Y. Tao, L.-H. Gong, Quantum Inf. Proc. 13, 513 (2014)

    Article  Google Scholar 

  12. Q. Turchette, C. Wood, B. King, C. Myatt, D. Leibfried, W. Itano, C. Monroe, D. Wineland, Phys. Rev. Lett. 81, 3631 (1998)

    Article  ADS  Google Scholar 

  13. A. Izmalkov, M. Grajcar, E. Il’Ichev, T. Wagner, H.-G. Meyer, A.Y. Smirnov, M. Amin, A.M. van den Brink, A. Zagoskin, Phys. Rev. Lett. 93, 049902 (2004)

    Article  ADS  Google Scholar 

  14. Q. Liao, G. Fang, Y. Wang, M. Ahmad, S. Liu, Eur. Phys. J. D 61, 475 (2011)

    Article  ADS  Google Scholar 

  15. M. Faghihi, M.K. Tavassoly, J. Phys. B: At. Mol. Opt. Phys. 45, 035502 (2012)

    Article  ADS  Google Scholar 

  16. E. Solano, R. de Matos Filho, N. Zagury, J. Opt. B 4, S324 (2002)

    Article  ADS  Google Scholar 

  17. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  18. M.J. Faghihi, M.K. Tavassoly, J. Phys. B: At. Mol. Opt. Phys. 46, 145506 (2013)

    Article  ADS  Google Scholar 

  19. M.J. Faghihi, M.K. Tavassoly, M.B. Harouni, Laser Phys. 24, 045202 (2014)

    Article  ADS  Google Scholar 

  20. H.R. Baghshahi, M.K. Tavassoly, Phys. Scr. 89, 075101 (2014)

    Article  ADS  Google Scholar 

  21. M. Zukowski, A. Zeilinger, M. Horne, A. Ekert, Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  22. E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, H. Eisenberg, Phys. Rev. Lett. 110, 210403 (2013)

    Article  ADS  Google Scholar 

  23. S. Bose, V. Vedral, P.L. Knight, Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  24. R. Polkinghorne, T. Ralph, Phys. Rev. Lett. 83, 2095 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, K. Peng, Phys. Rev. Lett. 93, 250503 (2004)

    Article  ADS  Google Scholar 

  26. B.-S. Shi, Y.-K. Jiang, G.-C. Guo, Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  27. C. Hu, J. Rarity, Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  28. N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, A. Furusawa, Science 332, 330 (2011)

    Article  ADS  Google Scholar 

  29. J.-L. Liu, R.-H. Shi, J.-J. Shi, G.-L. Lv, Y. Guo, Chin. Phys. B 25, 080306 (2016)

    Article  ADS  Google Scholar 

  30. R. Pakniat, M.K. Tavassoly, M.H. Zandi, Opt. Commun. 382, 381 (2017)

    Article  ADS  Google Scholar 

  31. R. Pakniat, M.K. Tavassoly, M.H. Zandi, Chin. Phys. B 25, 100303 (2016)

    Article  ADS  Google Scholar 

  32. F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, H.-Y. Zhou, Eur. Phys. J. D 39, 459 (2006)

    Article  ADS  Google Scholar 

  33. A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, Phys. Rev. Lett. 110, 160502 (2013)

    Article  ADS  Google Scholar 

  34. G. Brida, M. Chekhova, M. Genovese, L. Krivitsky, Phys. Rev. A 76, 053807 (2007)

    Article  ADS  Google Scholar 

  35. K. Mishima, K. Yamashita, Chem. Phys. 352, 281 (2008)

    Article  ADS  Google Scholar 

  36. F. Soto-Eguibar, V. Arrizon, A. Zuñiga-Segundo, H. Moya-Cessa, Opt. Lett. 39, 6158 (2014)

    Article  ADS  Google Scholar 

  37. M. Hillery, Phys. Rev. A 44, 4578 (1991)

    Article  ADS  Google Scholar 

  38. C.C. Gerry, Phys. Rev. A 59, 4095 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  39. Y.-B. Sheng, L. Zhou, S.-M. Zhao, B.-Y. Zheng, Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  40. D. Vitali, M. Fortunato, P. Tombesi, Phys. Rev. Lett. 85, 445 (2000)

    Article  ADS  Google Scholar 

  41. J. Pachos, S. Chountasis, Phys. Rev. A 62, 052318 (2000)

    Article  ADS  Google Scholar 

  42. M. Abdel-Aty, J. Phys. B: At. Mol. Opt. Phys. 33, 2665 (2000)

    Article  ADS  Google Scholar 

  43. H.R. Baghshahi, M.K. Tavassoly, M.J. Faghihi, Laser Phys. 24, 125203 (2014)

    Article  ADS  Google Scholar 

  44. Y.-B. Sheng, F.-G. Deng, H.-Y. Zhou, Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  45. Y.-B. Sheng, F.-G. Deng, G.L. Long, Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  46. B. Yurke, D. Stoler, Phys. Rev. Lett. 57, 13 (1986)

    Article  ADS  Google Scholar 

  47. G.R. Honarasa, M.K. Tavassoly, Phys. Scr. 86, 035401 (2012)

    Article  ADS  Google Scholar 

  48. C. Di Fidio, W. Vogel, M. Khanbekyan, D.-G. Welsch, Phys. Rev. A 77, 043822 (2008)

    Article  ADS  Google Scholar 

  49. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  50. S.-W. Lee, H. Jeong, Bell-state measurement and quantum teleportation using linear optics: two-photon pairs, entangled coherent states, and hybrid entanglement, arXiv:1304.1214 (2013)

  51. N. Gisin, H. Bechmann-Pasquinucci, Phys. Lett. A 246, 1 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  52. C. Ai-Xi, D. Li, Chin. Phys. 16, 1027 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Tavassoly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Tavassoly, M.K. & Nourmandipour, A. Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method. Eur. Phys. J. Plus 132, 531 (2017). https://doi.org/10.1140/epjp/i2017-11815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11815-y

Navigation