Abstract
We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments (gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments (DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool (GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes (DarkSUSY and micrOMEGAs), and application of DarkBit ’s advanced direct and indirect detection routines to a simple effective dark matter model.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Planck Collaboration, P.A.R. Ade, et. al., Planck 2015 results. XIII. Cosmological parameters. A&A 594, A13 (2016). arXiv:1502.01589
J. Silk et. al., Particle Dark Matter: Observations, Models and Searches (2010)
F.D. Steffen, Dark matter candidates—axions, neutralinos, gravitinos, and axinos. Eur. Phys. J. C 59, 557–588 (2009). arXiv:0811.3347
J.L. Feng, Dark matter candidates from particle physics and methods of detection. ARA&A 48, 495–545 (2010). arXiv:1003.0904
H. Baer, K.-Y. Choi, J.E. Kim, L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm. Phys. Rep. 555, 1–60 (2015). arXiv:1407.0017
G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996). arXiv:hep-ph/9506380
D. Hooper, S. Profumo, Dark matter and collider phenomenology of universal extra dimensions. Phys. Rep. 453, 29–115 (2007). arXiv:hep-ph/0701197
S. Tulin, H.-B. Yu, K.M. Zurek, Beyond collisionless dark matter: particle physics dynamics for dark matter Halo structure. Phys. Rev. D 87, 115007 (2013). arXiv:1302.3898
F.-Y. Cyr-Racine, K. Sigurdson, et. al., ETHOS—an effective theory of structure formation: from dark particle physics to the matter distribution of the Universe. arXiv:1512.05344
GAMBIT Collaboration, P. Athron, C. Balazs, et. al., GAMBIT: the global and modular beyond-the-standard-model inference tool. arXiv:arXiv:1705.07908
GAMBIT Collider Workgroup, C. Balázs, A. Buckley, et. al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. arXiv:1705.07919
GAMBIT Flavour Workgroup, F.U. Bernlochner, M. Chrzaszcz, et. al., FlavBit: a GAMBIT module for computing flavour observables and likelihoods. arXiv:1705.07933
GAMBIT Models Workgroup, P. Athron, C. Balázs, et. al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. arXiv:1705.07936
GAMBIT Scanner Workgroup, G.D. Martinez, J. McKay, et. al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. arXiv:1705.07959
P. Gondolo, J. Edsjö et al., DarkSUSY: computing supersymmetric dark matter properties numerically. JCAP 7, 8 (2004). arXiv:astro-ph/0406204
G. Bélanger, J. Da Silva, T. Perrillat-Bottonet, A. Pukhov, Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs. JCAP 12, 036 (2015). arXiv:1507.07987
IceCube Collaboration, M.G. Aartsen et. al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry. JCAP 04, 022 (2016). arXiv:1601.00653
M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097
P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY—a spectrum generator generator for supersymmetric models. Comput. Phys. Commun. 190, 139–172 (2015). arXiv:1406.2319
B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002). arXiv:hep-ph/0104145
E. Bertschinger, Self-similar secondary infall and accretion in an Einstein-de Sitter universe. ApJ Suppl. 58, 39 (1985)
J.F. Navarro, C.S. Frenk, S.D.M. White, The Structure of cold dark matter halos. ApJ 462, 563–575 (1996). arXiv:astro-ph/9508025
A.V. Kravtsov, A.A. Klypin, J.S. Bullock, J.R. Primack, The cores of dark matter dominated galaxies: theory versus observations. ApJ 502, 48 (1998). arXiv:astro-ph/9708176
B. Moore, T.R. Quinn, F. Governato, J. Stadel, G. Lake, Cold collapse and the core catastrophe. MNRAS 310, 1147–1152 (1999). arXiv:astro-ph/9903164
A.W. Graham, D. Merritt, B. Moore, J. Diemand, B. Terzic, Empirical models for dark matter Halos. I. Nonparametric construction of density profiles and comparison with parametric models. Astron. J. 132, 2685–2700 (2006). arXiv:astro-ph/0509417
U. Haud, J. Einasto, Galactic models with massive corona I. Method. A&A 223, 89–94 (1989)
R. Schoenrich, J. Binney, W. Dehnen, Local kinematics and the local standard of rest. MNRAS 403, 1829 (2010). arXiv:0912.3693
K. Freese, M. Lisanti, C. Savage, Annual modulation of dark matter: a review. Rev. Mod. Phys. 85, 1561–1581 (2013). arXiv:1209.3339
A.K. Drukier, K. Freese, D.N. Spergel, Detecting cold dark matter candidates. Phys. Rev. D 33, 3495–3508 (1986)
P.D. Serpico, G. Bertone, Astrophysical limitations to the identification of dark matter: indirect neutrino signals vis-a-vis direct detection recoil rates. Phys. Rev. D 82, 063505 (2010). arXiv:1006.3268
J.I. Read, The local dark matter density. J. Phys. G 41, 063101 (2014). arXiv:1404.1938
J. Bovy, S. Tremaine, On the local dark matter density. ApJ 756, 89 (2012). arXiv:1205.4033
J.A.R. Caldwell, J.P. Ostriker, The mass distribution within our galaxy: a three component model. ApJ 251, 61–87 (1981)
R. Catena, P. Ullio, A novel determination of the local dark matter density. JCAP 1008, 004 (2010). arXiv:0907.0018
P. Salucci, F. Nesti, G. Gentile, C.F. Martins, The dark matter density at the Sun’s location. A&A 523, A83 (2010). arXiv:1003.3101
M. Pato, F. Iocco, G. Bertone, Dynamical constraints on the dark matter distribution in the Milky Way. JCAP 1512, 001 (2015). arXiv:1504.06324
M. Pato, O. Agertz, G. Bertone, B. Moore, R. Teyssier, Systematic uncertainties in the determination of the local dark matter density. Phys. Rev. D 82, 023531 (2010). arXiv:1006.1322
Y. Akrami, C. Savage, P. Scott, J. Conrad, J. Edsjö, How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry? JCAP 1104, 012 (2011). arXiv:1011.4318
M.J. Reid et al., Trigonometric parallaxes of massive star forming regions: VI. Galactic structure, fundamental parameters and non-circular motions. ApJ 700, 137–148 (2009). arXiv:0902.3913
J. Bovy, D.W. Hogg, H.-W. Rix, Galactic masers and the Milky Way circular velocity. ApJ 704, 1704–1709 (2009). arXiv:0907.5423
M.C. Smith et al., The RAVE survey: constraining the local galactic escape speed. MNRAS 379, 755–772 (2007). arXiv:astro-ph/0611671
M. Cirelli, G. Corcella et al., PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. JCAP 3, 051 (2011). arXiv:1012.4515
J. Edsjö, P. Gondolo, Neutralino relic density including coannihilations. Phys. Rev. D 56, 1879–1894 (1997). arXiv:hep-ph/9704361
P. Gondolo, G. Gelmini, Cosmic abundances of stable particles: improved analysis. Nucl. Phys. A 360, 145–179 (1991)
P. Gondolo, J. Edsjö et al., DarkSUSY: computing supersymmetric dark matter properties numerically. JCAP 0407, 008 (2004). arXiv:astro-ph/0406204
G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs 3: a program for calculating dark matter observables. Comput. Phys. Commun. 185, 960–985 (2014). arXiv:1305.0237
G. Bélanger, F. Boudjema, et. al., Indirect search for dark matter with micrOMEGAs2.4. Comput. Phys. Commun. 182, 842–856 (2011). arXiv:1004.1092
G. Bélanger, F. Boudjema, A. Pukhov, and A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun. 180, 747–767 (2009). arXiv:0803.2360
G. Bélanger, F. Boudjema, A. Pukhov, and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model. Comput. Phys. Commun. 176, 367–382 (2007). arXiv:hep-ph/0607059
A. Belyaev, N.D. Christensen, A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model. Comput. Phys. Commun. 184, 1729–1769 (2013). arXiv:1207.6082
G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs: version 1.3. Comput. Phys. Commun. 174, 577–604 (2006). arXiv:hep-ph/0405253
G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, MicrOMEGAs: a program for calculating the relic density in the MSSM. Comput. Phys. Commun. 149, 103–120 (2002). arXiv:hep-ph/0112278
N. Baro, F. Boudjema, A. Semenov, Full one-loop corrections to the relic density in the MSSM: a few examples. Phys. Lett. B 660, 550–560 (2008). arXiv:0710.1821
N. Baro, F. Boudjema, G. Chalons, S. Hao, Relic density at one-loop with gauge boson pair production. Phys. Rev. D 81, 015005 (2010). arXiv:0910.3293
B. Herrmann, M. Klasen, K. Kovarik, M. Meinecke, P. Steppeler, One-loop corrections to gaugino (co)annihilation into quarks in the MSSM. Phys. Rev. D 89, 114012 (2014). arXiv:1404.2931
J. Harz, B. Herrmann, M. Klasen, K. Kovarik, P. Steppeler, Precise prediction of the dark matter relic density within the MSSM. PoS EPS-HEP2015, 410 (2015). arXiv:1510.06295
J. Harz, B. Herrmann, M. Klasen, K. Kovarik, P. Steppeler, Theoretical uncertainty of the supersymmetric dark matter relic density from scheme and scale variations. Phys. Rev. D 93, 114023 (2016). arXiv:1602.08103
M.W. Goodman, E. Witten, Detectability of certain dark matter candidates. Phys. Rev. D 31, 3059 (1985)
J. Kumar, D. Marfatia, Matrix element analyses of dark matter scattering and annihilation. Phys. Rev. D 88, 014035 (2013). arXiv:1305.1611
R.H. Helm, Inelastic and elastic scattering of 187-Mev electrons from selected even-even nuclei. Phys. Rev. 104, 1466–1475 (1956)
J. Lewin, P. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 6, 87–112 (1996)
G. Duda, A. Kemper, P. Gondolo, Model independent form factors for spin independent neutralino-nucleon scattering from elastic electron scattering data. JCAP 0704, 012 (2007). arXiv:hep-ph/0608035
V. Bednyakov, F. Simkovic, Nuclear spin structure in dark matter search: the zero momentum transfer limit. Phys. Part. Nucl. 36, 131–152 (2005). arXiv:hep-ph/0406218
V. Bednyakov, F. Simkovic, Nuclear spin structure in dark matter search: the finite momentum transfer limit. Phys. Part. Nucl. 37, S106–S128 (2006). arXiv:hep-ph/0608097
C. Savage, A. Scaffidi, M. White, A.G. Williams, LUX likelihood and limits on spin-independent and spin-dependent WIMP couplings with LUXCalc. Phys. Rev. D 92, 103519 (2015). arXiv:1502.02667
A. Berlin, S. Gori, T. Lin, L.-T. Wang, Pseudoscalar portal dark matter. Phys. Rev. D 92, 015005 (2015). arXiv:1502.06000
A. Beniwal, F. Rajec et al., Combined analysis of effective Higgs portal dark matter models. Phys. Rev. D 93, 115016 (2016). arXiv:1512.06458
S. Liem, G. Bertone et al., Effective field theory of dark matter: a global analysis. JHEP 09, 077 (2016). arXiv:1603.05994
P. Klos, J. Menéndez, D. Gazit, A. Schwenk, Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents. Phys. Rev. D 88, 083516 (2013). arXiv:1304.7684
G.J. Feldman, R.D. Cousins, A unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57, 3873–3889 (1998). arXiv:physics/9711021.
S. Yellin, Finding an upper limit in the presence of unknown background. Phys. Rev. D 66, 032005 (2002). arXiv:physics/0203002
XENON100 Collaboration, E. Aprile, M. Alfonsi, et al., Dark matter results from 225 Live Days of XENON100 Data. Phys. Rev. Lett. 109, 181301 (2012). arXiv:1207.5988
SuperCDMS Collaboration, R. Agnese et. al., Search for low-mass weakly interacting massive particles with SuperCDMS. Phys. Rev. Lett. 112, 241302 (2014). arXiv:1402.7137
SIMPLE Collaboration, M. Felizardo et. al., The SIMPLE phase II dark matter search. Phys. Rev. D 89, 072013 (2014). arXiv:1404.4309
LUX Collaboration, D.S. Akerib, et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 112, 091303 (2014). arXiv:1310.8214
D.S. Akerib, H.M. Araújo et al., Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data. Phys. Rev. Lett. 116, 161301 (2016). arXiv:1512.03506
D.S. Akerib, S. Alsum et al., Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118, 021303 (2017). arXiv:1608.07648
PandaX-II Collaboration, A. Tan et. al., Dark matter results from first 98.7 days of data from the PandaX-II experiment. Phys. Rev. Lett. 117, 121303 (2016). arXiv:1607.07400
C. Amole, M. Ardid et al., Dark matter search results from the PICO-60 CF\(_{3}\) I bubble chamber. Phys. Rev. D 93, 052014 (2016). arXiv:1510.07754
PICO Collaboration, C. Amole, et al., Improved dark matter search results from PICO-2L Run 2. Phys. Rev. D 93, 061101 (2016). arXiv:1601.03729
XENON, E. Aprile et. al., First dark matter search results from the XENON1T experiment. arXiv:1705.06655
PICO, C. Amole et. al., Dark matter search results from the PICO-60 \(C_3\) \(F_8\) bubble chamber. Phys. Rev. Lett. 118, 251301 (2017). arXiv:1702.07666
PICO Collaboration, C. Amole, et al., Dark matter search results from the PICO-2L C\(_3\)F\(_8\) bubble chamber. Phys. Rev. Lett. 114, 231302 (2015). arXiv:1503.00008
C. Savage, TPCMC: a time projection chamber Monte Carlo for dark matter searches. Private code
M. Drees, M. Nojiri, Neutralino—nucleon scattering revisited. Phys. Rev. D 48, 3483–3501 (1993). arXiv:hep-ph/9307208
J.M. Cline, K. Kainulainen, P. Scott, C. Weniger, Update on scalar singlet dark matter. Phys. Rev. D 88, 055025 (2013). arXiv:1306.4710
J.R. Ellis, K.A. Olive, C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter. Phys. Rev. D 77, 065026 (2008). arXiv:0801.3656
H.-W. Lin, Lattice QCD for precision nucleon matrix elements. arXiv:1112.2435
M.M. Pavan, I.I. Strakovsky, R.L. Workman, R.A. Arndt, The Pion nucleon Sigma term is definitely large: Results from a G.W.U. analysis of pi nucleon scattering data. PiN Newslett. 16, 110–115 (2002). arXiv:hep-ph/0111066
J.M. Alarcon, J. Martin Camalich, J.A. Oller, The chiral representation of the \(\pi N\) scattering amplitude and the pion-nucleon sigma term. Phys. Rev. D 85, 051503 (2012). arXiv:1110.3797
J. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.-G. MeiSSner, Extracting the sigma-term from low-energy pion-nucleon scattering. arXiv:1706.01465
L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich, M.J. Vicente-Vacas, Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD data. Phys. Rev. D 88, 054507 (2013). arXiv:1304.0483
RQCD, G.S. Bali, S. Collins, et. al., Direct determinations of the nucleon and pion \(\sigma \) terms at nearly physical quark masses. Phys. Rev. D 93, 094504 (2016). arXiv:1603.00827
ETM, A. Abdel-Rehim, C. Alexandrou, et. al., Direct evaluation of the quark content of nucleons from lattice QCD at the physical point. Phys. Rev. Lett. 116, 252001 (2016). arXiv:1601.01624
P.E. Shanahan, Chiral Effective theory methods and their application to the structure of hadrons from lattice QCD. J. Phys. G 43, 124001 (2016). arXiv:1606.08812
Particle Data Group, K. A. Olive et. al., Review of Particle Physics. Chin. Phys. C 38, 090001 (2014)
Y. Goto et al., Polarized parton distribution functions in the nucleon. Phys. Rev. D 62, 034017 (2000). arXiv:hep-ph/0001046
COMPASS Collaboration, V.Yu. Alexakhin et. al., The deuteron spin-dependent structure function g1(d) and its first moment. Phys. Rev. B 647, 8–17 (2007). arXiv:hep-ex/0609038
T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175
T. Bringmann, C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects. Phys. Dark Univ. 1, 194–217 (2012). arXiv:1208.5481
L. Bergström, J. Edsjö, P. Gondolo, Indirect detection of dark matter in km size neutrino telescopes. Phys. Rev. D 58, 103519 (1998). arXiv:hep-ph/9806293
M. Cirelli, G. Giesen, Antiprotons from dark matter: current constraints and future sensitivities. JCAP 1304, 015 (2013). arXiv:1301.7079
T. Bringmann, M. Vollmann, C. Weniger, Updated cosmic-ray and radio constraints on light dark matter: implications for the GeV gamma-ray excess at the Galactic center. Phys. Rev. D 90, 123001 (2014). arXiv:1406.6027
M. Cirelli, D. Gaggero, G. Giesen, M. Taoso, A. Urbano, Antiproton constraints on the GeV gamma-ray excess: a comprehensive analysis. JCAP 1412, 045 (2014). arXiv:1407.2173
L. Bergström, T. Bringmann, I. Cholis, D. Hooper, C. Weniger, New limits on dark matter annihilation from AMS cosmic ray positron data. Phys. Rev. Lett. 111, 171101 (2013). arXiv:1306.3983
T. Bringmann, C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects. Phys. Dark Univ. 1, 194–217 (2012). arXiv:1208.5481
L. Bergström, P. Ullio, J.H. Buckley, Observability of gamma-rays from dark matter neutralino annihilations in the Milky Way halo. Astropart. Phys. 9, 137–162 (1998). arXiv:astro-ph/9712318
T. Bringmann, L. Bergström, J. Edsjö, New gamma-ray contributions to supersymmetric dark matter annihilation. JHEP 01, 049 (2008). arXiv:0710.3169
A. Ibarra, S. Lopez Gehler, M. Pato, Dark matter constraints from box-shaped gamma-ray features. JCAP 1207, 043 (2012). arXiv:1205.0007
M.A. Sánchez-Conde, F. Prada, The flattening of the concentration mass relation towards low halo masses and its implications for the annihilation signal boost. MNRAS 442, 2271–2277 (2014). arXiv:1312.1729
G. Steigman, H. Quintana, C.L. Sarazin, J. Faulkner, Dynamical interactions and astrophysical effects of stable heavy neutrinos. AJ 83, 1050–1061 (1978)
T.K. Gaisser, G. Steigman, S. Tilav, Limits on cold-dark-matter candidates from deep underground detectors. Phys. Rev. D 34, 2206–2222 (1986)
A. Gould, Resonant enhancements in weakly interacting massive particle capture by the earth. ApJ 321, 571–585 (1987)
M. Danninger, C. Rott, Solar WIMPs unravelled: Experiments, astrophysical uncertainties, and interactive tools. Phys. Dark Univ. 5, 35–44 (2014). arXiv:1509.08230
M. Blennow, J. Edsjö, T. Ohlsson, Neutrinos from WIMP annihilations obtained using a full three-flavor Monte Carlo approach. JCAP 1, 21 (2008). arXiv:0709.3898
P. Scott, M. Fairbairn, J. Edsjö, Dark stars at the Galactic Centre—the main sequence. MNRAS 394, 82–104 (2009). arXiv:0809.1871
M. T. Frandsen, S. Sarkar, Asymmetric dark matter and the Sun, Phys. Rev. Lett. 105, 011301 (2010). arxiv:1003.4505
M. Taoso, F. Iocco, G. Meynet, G. Bertone, P. Eggenberger, Effect of low mass dark matter particles on the Sun. Phys. Rev. D 82, 083509 (2010). arXiv:1005.5711
F. Iocco, M. Taoso, F. Leclercq, G. Meynet, Main sequence stars with asymmetric dark matter. Phys. Rev. Lett. 108, 061301 (2012). arXiv:1201.5387
A.C. Vincent, P. Scott, A. Serenelli, Possible indication of momentum-dependent asymmetric dark matter in the Sun. Phys. Rev. Lett. 114, 081302 (2015). arXiv:1411.6626
A.C. Vincent, A. Serenelli, P. Scott, Generalised form factor dark matter in the Sun. JCAP 8, 40 (2015). arXiv:1504.04378
A.C. Vincent, P. Scott, A. Serenelli, Updated constraints on velocity and momentum-dependent asymmetric dark matter. JCAP 11, 007 (2016). arXiv:1605.06502
IceCube Collaboration, M.G. Aartsen, K. Abraham, et. al., Search for dark matter annihilation in the Galactic Center with IceCube-79. Eur. Phys. J. C 75, 492 (2015). arXiv:1505.07259
ANTARES Collaboration, S. Adrián-Martínez et. al., Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope. JCAP 10, 068 (2015). arXiv:1505.04866
A. Gould, Weakly interacting massive particle distribution in and evaporation from the sun. ApJ 321, 560–570 (1987)
G. Busoni, A. De Simone, W.-C. Huang, On the minimum dark matter mass testable by neutrinos from the Sun. JCAP 7, 010 (2013). arXiv:1305.1817
G. Busoni, A. De Simone, P. Scott, A.C. Vincent, Evaporation and scattering of momentum- and velocity-dependent dark matter in the Sun. arXiv:1703.07784
P. Baratella, M. Cirelli et al., PPPC 4 DM\(\nu \): a poor particle physicist cookbook for neutrinos from dark matter annihilations in the Sun. JCAP 3, 053 (2014). arXiv:1312.6408
WimpSim. http://www.fysik.su.se/\(\sim \)edsjo/wimpsim/
IceCube Collaboration, M.G. Aartsen et. al., Search for annihilating dark matter in the Sun with 3 years of IceCube data. Eur. Phys. J. C 77, 146 (2017). arXiv:1612.05949
K. Choi, K. Abe et al., Search for neutrinos from annihilation of captured low-mass dark matter particles in the sun by super-kamiokande. Phys. Rev. Lett. 114, 141301 (2015)
P. Scott, C. Savage, J. Edsjö, the IceCube Collaboration, R. Abbasi et al., Use of event-level neutrino telescope data in global fits for theories of new physics. JCAP 11, 57 (2012). arXiv:1207.0810
IceCube Collaboration, M.G. Aartsen, R. Abbasi, et. al., Search for dark matter annihilations in the Sun with the 79-string icecube detector. Phys. Rev. Lett. 110, 131302 (2013). arXiv:1212.4097
Fermi-LAT Collaboration, M. Ackermann et. al., Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi large area telescope. Phys. Rev. D 89, 042001 (2014). arXiv:1310.0828
Fermi-LAT Collaboration, M. Ackermann, A. Albert, et. al., Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of fermi large area telescope data. Phys. Rev. Lett. 115, 231301 (2015). arXiv:1503.02641
HESS Collaboration, A. Abramowski, et al., Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S. Phys. Rev. Lett. 106, 161301 (2011). arXiv:1103.3266
F. Calore, I. Cholis, C. Weniger, Background model systematics for the Fermi GeV excess. JCAP 1503, 038 (2015). arXiv:1409.0042
A. Achterberg, S. Amoroso et al., A description of the Galactic Center excess in the minimal supersymmetric standard model. JCAP 1508, 006 (2015). arXiv:1502.05703
H. Silverwood, C. Weniger, P. Scott, G. Bertone, A realistic assessment of the CTA sensitivity to dark matter annihilation. JCAP 1503, 055 (2015). arXiv:1408.4131
X. Huang, Y.-L.S. Tsai, Q. Yuan, LikeDM: likelihood calculator of dark matter detection. Comput. Phys. Commun. 213, 252–263 (2017). arXiv:1603.07119
A. Chiappo, J. Cohen-Tanugi, et. al., Dwarf spheroidal J-factors without priors: a likelihood-based analysis for indirect dark matter searches. arXiv:1608.07111
D. Hooper, L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope. Phys. Lett. B 697, 412–428 (2011). arXiv:1010.2752
O. Macias, C. Gordon, Contribution of cosmic rays interacting with molecular clouds to the Galactic Center gamma-ray excess. Phys. Rev. D 89, 063515 (2014). arXiv:1312.6671
K.N. Abazajian, N. Canac, S. Horiuchi, M. Kaplinghat, Astrophysical and dark matter interpretations of extended gamma-ray emission from the galactic center. Phys. Rev. D 90, 023526 (2014). arXiv:1402.4090
T. Daylan, D.P. Finkbeiner et al., The characterization of the gamma-ray signal from the central Milky Way: a case for annihilating dark matter. Phys. Dark Univ. 12, 1–23 (2016). arXiv:1402.6703
B. Zhou, Y.-F. Liang et al., GeV excess in the Milky Way: the role of diffuse galactic gamma-ray emission templates. Phys. Rev. D 91, 123010 (2015). arXiv:1406.6948
Fermi-LAT Collaboration, M. Ajello et. al., Fermi-LAT observations of high-energy \(\gamma \)-ray emission toward the galactic center. ApJ 819, 44 (2016). arXiv:1511.02938
R. Bartels, S. Krishnamurthy, C. Weniger, Strong support for the millisecond pulsar origin of the Galactic center GeV excess. Phys. Rev. Lett. 116, 051102 (2016). arXiv:1506.05104
S.K. Lee, M. Lisanti, B.R. Safdi, T.R. Slatyer, W. Xue, Evidence for unresolved \(\gamma \)-ray point sources in the inner galaxy. Phys. Rev. Lett. 116, 051103 (2016). arXiv:1506.05124
F. Calore, I. Cholis, C. McCabe, C. Weniger, A tale of tails: dark matter interpretations of the Fermi GeV excess in light of background model systematics. Phys. Rev. D 91, 063003 (2015). arXiv:1411.4647
H. Silverwood, CTA morphological likelihood analysis. Private code
T. Bringmann, A.J. Galea, P. Walia, Leading QCd corrections for indirect dark matter searches: a fresh look. Phys. Rev. D 93, 043529 (2016). arXiv:1510.02473
T. Bringmann, F. Calore, Significant enhancement of neutralino dark matter annihilation from electroweak Bremsstrahlung. Phys. Rev. Lett. 112, 071301 (2014). arXiv:1308.1089
T. Bringmann, F. Calore, A. Galea, M. Garny, Electroweak and Higgs Boson Internal Bremsstrahlung: General considerations for Majorana dark matter annihilation and application to MSSM neutralinos. arXiv:1705.03466
T. Sjostrand, S. Ask, et. al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2016). arXiv:1410.3012
M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. ARA&A 47, 481–522 (2009). arXiv:0909.0948
A.M. Serenelli, S. Basu, J.W. Ferguson, M. Asplund, New solar composition: the problem with solar models revisited. ApJ 705, L123–L127 (2009). arXiv:0909.2668
IceCube Collaboration, R. Abbasi, Y. Abdou, et. al., Limits on a Muon flux from neutralino annihilations in the sun with the IceCube 22-string detector. Phys. Rev. Lett. 102, 201302 (2009). arXiv:0902.2460
A.L. Read, Modified frequentist analysis of search results (the \(CL_s\) method). In 1st Workshop on Confidence limits (CERN, Geneva, 2000), pp. 81–101. CERN-2000-005
A.L. Read, DURHAM IPPP workshop paper: presentation of search results: the CL\(_{s}\) technique. J. Phys. G 28, 2693–2704 (2002)
G. Elor, N.L. Rodd, T.R. Slatyer, W. Xue, Model-independent indirect detection constraints on hidden sector dark matter. arXiv:1511.08787
GAMBIT Collaboration, P. Athron, C. Balázs, et. al., Global fits of GUT-scale SUSY models with GAMBIT. arXiv:1705.07935
GAMBIT Collaboration, P. Athron, C. Balázs, et. al., A global fit of the MSSM with GAMBIT. arXiv:1705.07917
GAMBIT Collaboration, P. Athron, C. Balázs, et. al., Status of the scalar singlet dark matter model. arXiv:1705.07931
PandaX-II Collaboration, C. Fu et. al., Spin-dependent weakly-interacting-massive-particle–Nucleon cross section limits from first data of PandaX-II experiment. Phys. Rev. Lett. 118, 071301 (2017). arXiv:1611.06553
G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs4.1: two dark matter candidates. Comput. Phys. Commun. 192, 322–329 (2015). arXiv:1407.6129
F. D’Eramo, J. Thaler, Semi-annihilation of Dark Matter. JHEP 06, 109 (2010). arXiv:1003.5912
K. Petraki, R.R. Volkas, Review of asymmetric dark matter. Int. J. Mod. Phys. A 28, 1330028 (2013). arXiv:1305.4939
M. Backovic, K. Kong, M. McCaskey, MadDM v.1.0: computation of dark matter relic abundance using MadGraph5. Phys. Dark Univ. 5-6, 18–28 (2014). arXiv:1308.4955
M. Backović, A. Martini, O. Mattelaer, K. Kong, G. Mohlabeng, Direct detection of dark matter with MadDM v.2.0. Phys. Dark Univ. 9-10, 37–50 (2015). arXiv:1505.04190
J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. JHEP 06, 128 (2011). arXiv:1106.0522
A. Hryczuk, R. Iengo, P. Ullio, Relic densities including Sommerfeld enhancements in the MSSM. JHEP 03, 069 (2011). arXiv:1010.2172
J.L. Feng, M. Kaplinghat, H.-B. Yu, Sommerfeld enhancements for thermal relic dark matter. Phys. Rev. D 82, 083525 (2010). arXiv:1005.4678
A. Arbey, F. Mahmoudi, SuperIso relic: a program for calculating relic density and flavor physics observables in supersymmetry. Comput. Phys. Commun. 181, 1277–1292 (2010). arXiv:0906.0369
T. Bringmann, Particle models and the small-scale structure of dark matter. New J. Phys. 11, 105027 (2009). arXiv:0903.0189
J.M. Cornell, S. Profumo, W. Shepherd, Kinetic decoupling and small-scale structure in effective theories of dark matter. Phys. Rev. D 88, 015027 (2013). arXiv:1305.4676
A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, The effective field theory of dark matter direct detection. JCAP 1302, 004 (2013). arXiv:1203.3542
J. Hisano, S. Matsumoto, M.M. Nojiri, O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center. Phys. Rev. D 71, 063528 (2005). arXiv:hep-ph/0412403
R. Iengo, Sommerfeld enhancement: general results from field theory diagrams. JHEP 05, 024 (2009). arXiv:0902.0688
J. Bovy, Substructure boosts to dark matter annihilation from Sommerfeld enhancement. Phys. Rev. D 79, 083539 (2009). arXiv:0903.0413
C. Arina, T. Bringmann, J. Silk, M. Vollmann, Enhanced line signals from annihilating Kaluza-Klein dark matter. Phys. Rev. D 90, 083506 (2014). arXiv:1409.0007
J. Choquette, J.M. Cline, J.M. Cornell, p-wave annihilating dark matter from a decaying predecessor and the galactic center excess. Phys. Rev. D 94, 015018 (2016). arXiv:1604.01039
Author information
Authors and Affiliations
Consortia
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Funded by SCOAP3
About this article
Cite this article
The GAMBIT Dark Matter Workgroup:., Bringmann, T., Conrad, J. et al. DarkBit: a GAMBIT module for computing dark matter observables and likelihoods. Eur. Phys. J. C 77, 831 (2017). https://doi.org/10.1140/epjc/s10052-017-5155-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjc/s10052-017-5155-4