Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Application of Ensemble Kalman Smoothing in Inverse Modeling of Advection and Diffusion

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

To study the spread of greenhouse gases in space and time, as well as to assess the fluxes of these gases from the Earth’s surface by using a data assimilation system is an important problem of monitoring the environment. One of the approaches to estimating the greenhouse gas fluxes is based on the assumption that the fluxes are constant in a given subdomain and over a given time interval (about a week). This is justified by the properties of the algorithm and the observational data used. The modern problems of estimating greenhouse gas fluxes from the Earth’s surface have large dimensions. Therefore, a problem statement is usually considered in which the fluxes are estimated, and an advection and diffusion model is included in the observation operator. Here we deal with large assimilation windows in which fluxes are estimated in several time intervals. The paper considers an algorithm for estimating the fluxes based on observations from a given time interval. The algorithm is a variant of an ensemble smoothing algorithm, which is widely used in such problems. It is shown that when using an assimilation window in which the fluxes are estimated for several time intervals, the algorithm may become unstable, and an observability condition is violated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Brammer, K. and Siffling, G., Filtr Kalmana–B’yusi (Kalman-Bucy Filters), Moscow: Nauka, 1982.

    Google Scholar 

  2. Bellman, R., Introduction to Matrix Analysis, New York, Toronto, London: McGraw-Hill, 1960.

    Google Scholar 

  3. Klimova, E.G., A Stochastic Ensemble Kalman Filter with Perturbation Ensemble Transformation, Num. An. Appl., 2019, vol. 12, no. 1, pp. 26–36.

    Article  MathSciNet  Google Scholar 

  4. Klimova, E.G., An Efficient Algorithm for Stochastic Ensemble Smoothing, Num. An. Appl., 2020, vol. 13, no. 4, pp. 321–331.

    Article  MathSciNet  Google Scholar 

  5. Bocquet, M., Elbern, H., Eskes, H., et al., Data Assimilation in Atmospheric Chemistry Models: Current Status and Future Prospects for Coupled Chemistry Meteorology Models, Atmos. Chem. Phys. Discuss., 2014, vol. 14, pp. 32233–32323; DOI:10.5194/acpd-14-32233-2014

    Article  Google Scholar 

  6. Bruhwiler, L.M.P., Michalak, A.M., Peters, W., Baker, D.F., and Tanset, P., An Improved Kalman Smoother for Atmospheric Inversions, Atmos. Chem. Phys., 2005, vol. 5, pp. 2691–2702.

    Article  Google Scholar 

  7. Cohn, S.E. and Dee, D.P., Observability of Discretized Partial Differential Equations, SIAM J. Numer. An., 1988, vol. 3, pp. 586–617.

    Article  MathSciNet  Google Scholar 

  8. Evensen, G., Data Assimilation. The Ensemble Kalman Filter, Berlin: Spriger-Verlag, 2009.

    Book  Google Scholar 

  9. Feng, L., Palmer, P.I., Bosch, H., and Dance, S., Estimating Surface CO2 Fluxes from Space-Borne CO2 Dry Air Mole Fraction Observations Using an Ensemble Kalman Filter, Atmos. Chem. Phys., 2009, vol. 9, pp. 2619–2633.

    Article  Google Scholar 

  10. Feng, L., Palmer, P.I., Bosch, H., et al., Consistent Regional Fluxes of CH4 and CO2 Inferred from GOSAT Proxy XCH4: XCO2 Retrievals, 2010–2014, Atmos. Chem. Phys., 2017, vol. 17, pp. 4781–4797.

    Article  Google Scholar 

  11. Feng, L., Palmer, P.I., Parker, R.J., et al., Estimates of European Uptake of CO2 Inferred from GOSAT XCO2 Retrievals: Sensitivity to Measurement Bias Inside and Outside, Atmos. Chem. Phys., 2016, vol. 16, pp. 1289–1302.

    Article  Google Scholar 

  12. Fraser, A., Palmer, P.I., Feng, L., et al., Estimating Regional Fluxes of CO2 and CH4 Using Space-Borne Observations of XCH4: XCO2, Atmos. Chem. Phys., 2014, vol. 14, pp. 12883–12895.

    Article  Google Scholar 

  13. Jazwinski, A.H., Stochastic Processes and Filtering Theory, New York: Academic Press, 1970.

    Google Scholar 

  14. Hunt, B.R., Kostelich, E.J., and Szunyogh, I., Efficient Data Assimilation for Spatiotemporal Chaos: A Local Ensemble Transform Kalman Filter, Phys. D: Nonlin. Phen., 2007, vol. 230, pp. 112–126.

    Article  MathSciNet  Google Scholar 

  15. Houtekamer, H.L. and Zhang, F., Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation, Monthly Weather Rev., 2016, vol. 144, pp. 4489–4532.

    Article  Google Scholar 

  16. Kang, J., Kalnay, E., Miyoshi, T., Liu, J., and Fung, I., Estimating of Surface Carbon Fluxes with an Advanced Data Assimilation Methodology, J. Geophys. Res., 2012, vol. 117, Article no. D24101; DOI:10.1029/2012JD018259

    Article  Google Scholar 

  17. Klimova, E.G., Bayesian Approach to Data Assimilation Based on Ensembles of Forecasts and Observations, IOP Conf. Ser.: Earth and Environmental Sci., 2019; DOI:10.1088/1755-1315/386/1/012038

    Article  Google Scholar 

  18. Nakamura, G. and Potthast, R., Inverse Modeling, 2015; DOI:10.1088/978-0-7503-1218-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Klimova.

Additional information

Translated from Sibirskii Zhurnal Vychislitel’noi Matematiki, 2023, Vol. 27, No. 3, pp. 287-301. https://doi.org/10.15372/SJNM20240303.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimova, E.G. Application of Ensemble Kalman Smoothing in Inverse Modeling of Advection and Diffusion. Numer. Analys. Appl. 17, 234–244 (2024). https://doi.org/10.1134/S1995423924030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423924030030

Keywords

Navigation