Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Light Transport in Realistic Rendering: State-of-the-Art Simulation Methods

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

The modern realistic computer graphics is based on physically correct lighting simulation. One of the main and computationally difficult problems is the calculation of light transport or global illumination, i.e. the distribution of light in a virtual scene taking into account multiple reflections, light scattering and various interactions of light with the scene objects. This problem is studied in hundreds of books and papers. They describe dozens of computational methods and their modifications. Our survey not only lists and briefly describes them but also gives some kind of a “map” of existing works that helps the reader to find one’s bearings, understand the advantages and drawbacks of these methods and thus select an appropriate basic approach. Special attention is paid to such characteristics of the methods as their robustness and universality with respect to models, the clarity of their verification, the possibility of efficient implementation on GPUs and the constraints imposed on the scene or illumination phenomena. In contrast to existing surveys, we try to analyze not only the efficiency of the methods but their limitations and the complexity of software implementation as well. In addition, the results of the authors' own numerical experiments that illustrate some of our conclusions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Vorba, J., Bidirectional photon mapping, Proc. of the 15th Central European Seminar on Computer Graphics (CESCG) 2011, Prague: Charles University, 2011.

  2. Krivanek, J., Georgiev, I., Hachisuka, T., Vevoda, P., Sik, M., Nowrouzezahrai, D., and Jarosz, W., Unifying points, beams, and paths in volumetric light transport simulation, ACM Trans. Graphics (Proc. of SIGGRAPH), 2014, vol. 33, no. 4.

  3. Veach, E., Robust Monte Carlo methods for light transport simulation, Ph.D. Dissertation, Stanford, Calif.: Stanford University, 1998, pp. 1–406.

  4. Speierer, S., Hery, C., Villemin, R., and Jako, W., Caustic connection strategies for bidirectional path tracing, Pixar Technical Memo, 2018, vol. 18-01.

    Google Scholar 

  5. West, R., Georgiev, I., Gruson, A., and Hachisuka, T., Continuous multiple importance sampling, ACM Trans. Graph., 2020, vol. 39, no. 4, Article 136.

    Article  Google Scholar 

  6. Cline, D., Talbot, J., and Egbert, P., Energy redistribution path tracing, ACM Trans. Graph., 2005, vol. 24, no. 3, pp. 1186–1195.

    Article  Google Scholar 

  7. Li, T., Jaakko Lehtinen, J., Ramamoorthi, R., Jakob, W., and Durand, F., Anisotropic Gaussian mutations for Metropolis light transport through Hessian-Hamiltonian dynamics, ACM Trans. Graph., 2015, vol. 34, no. 6, Article 209, 13 p.

  8. Brooks, S., Gelman, A., Jones, G., and Meng, X., MCMC using Hamiltonian dynamics, in/ Handbook of Markov Chain Monte Carlo, by Chapman, 2011, Chapter 5, pp. 113–163.

  9. Kaplanyan, A.S., Hanika, J., and Dachsbacher, C., The natural-constraint representation of the path space for efficient light transport simulation, ACM Trans. Graph. (Proc. of SIGGRAPH), 2014, vol. 33, no. 4, Article 102.

  10. Bogolepov, D. and Ulyanov, D. GPU-optimized bidirectional path tracing, Conf. on Computer Graphics, Visualization and Computer Vision, 2013, no. 5, pp. 1–15.

  11. Kelemen, C, Szirmay-Kalos, L., Antal, G., and Csonka, F., A simple and robust mutation strategy for the Metropolis light transport algorithm, EUROGRAPHICS, 2002, ed. by Drettakis, G. and Seidel, H.-P. 2002, vol. 21, no. 3.

  12. Roberts, G.O. et al. Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli. 1996. vol. 2, no. 4. pp. 341–363.

    Article  MathSciNet  MATH  Google Scholar 

  13. Atchade, Y.F., An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift, Methodology Comput. Appl. Probab., 2006. vol. 8, no. 2, pp. 235–254.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sik, M., Otsu, H., Hachisuka, T., and Krivanek, J., Robust light transport simulation via Metropolised bidirectional estimators, ACM Trans. Graph., 2016, vol. 35, no. 6, Article 245.

    Article  Google Scholar 

  15. Wenzel, J., Light Transport on Path-Space Manifolds, Ph.D. Dissertation, Cornell University, 2013.

  16. Jiating Chen, Bin Wang, and Jun-Hai Yong, Improved stochastic progressive photon mapping with Metropolis sampling, Proc. of the Twenty Second Eurographics Conference on Rendering (EGSR ’11), 2011, Eurographics Association, Goslar, DEU, pp. 1205–1213.

  17. Veach, E. and Guibas, L. J., Metropolis Light Transport, SIGGRAPH’97 Proc. of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 65–76.

  18. Hachisuka, T., Kaplanyan, A.S., and Dachsbache, C., Multiplexed Metropolis Light Transport, ACM Trans. Graph. (TOG), Proc. of ACM SIGGRAPH 2014.

  19. Popov, S., Ramamoorthi, R., Durand, F., and Drettakis, G., Probabilistic Connections for Bidirectional Path Tracing, Eurographics Symposium on Rendering, 2015, vol. 34, no. 4, pp. 75–86.

  20. Jendersie, J. et al. Pixel cache light tracing, Proc. of the Conference on Vision, Modeling and Visualization, 2017, pp. 137–144.

  21. Hachisuka T., Pantaleoni J., and Wann Jensen, H., A path space extension for robust light transport simulation, Proc. of ACM SIGGRAPH Asia, ACM Trans. Graph. 2012, vol. 31, no. 6, Article 191.

    Article  Google Scholar 

  22. Wann Jensen, H., Global illumination using photon maps, Eurographics Workshop on Rendering techniques, Vienna: Springer, 1996, pp. 21–30.

  23. Lai, Y., Fan, S.H., Chenney, S., and Dyer, C., Photorealistic image rendering with population Monte-Carlo energy redistribution, Proc. of the 18th Eurographics Conference on Rendering Techniques, 2007.

  24. Kajiya, J.T., The rendering equation, Proc. of the 13th annual conference on Computer Graphics and Interactive Techniques (SIGGRAPH 86), Association for Computing Machinery, 1986, vol. 20, no. 4, pp. 143–150.

  25. Hachisuka, T., Ogaki, S., and Wann Jensen, H., Progressive photon mapping, ACM Trans. Graph., 2008, vol. 27, no. 5, Article 130.

    Article  Google Scholar 

  26. Kitaoka, S., Kitamura, Y., Kishino, F., Replica exchange light transport, Comput. Graphics Forum, Oxford, UK: Blackwell, 2009, vol. 28, no. 8, pp. 2330-2342.

  27. Bitterli, B., Jakob, W., Novak, J., and Jarosz, W., Reversible jump Metropolis light transport using inverse mappings, ACM Trans. Graph., 2017, vol. 37, no. 1.

  28. Otsu, H., Kaplanyan, A.S., Hanika, J., Dachsbacher, C., and Hachisuka, T., Fusing state spaces for Markov chain Monte Carlo rendering, ACM Trans. Graph., 2017, vol. 36, no. 4, Article 74.

    Article  Google Scholar 

  29. Pantaleoni, J., Charted Metropolis light transport, ACM Trans. Graph., 2017, vol. 36, no. 4, Article 75.

    Article  Google Scholar 

  30. Bitterli, B., Wyman, C., Pharr, M., Shirley, P., Lefohn, A., and Jarosz, W., Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting, ACM Trans. Graph., 2020, vol. 39, no. 4, Article 148.

    Article  Google Scholar 

  31. Hachisuka, T. and Wann Jensen, H., Stochastic progressive photon mapping, ACM SIGGRAPH Asia papers, 2009, pp. 1–8.

  32. Gruson, A., West, R., and Hachisuka, T., Stratified Markov chain Monte Carlo light transport, EUROGRAPHICS, 2020, vol. 39, no. 2.

  33. Haindl, M. and Filip, J., Spatially Varying Bidirectional Reflectance Distribution Functions, Visual Texture, 2013, pp. 119–145.

    Book  Google Scholar 

  34. Georgiev, I., Krivanek, J., Davidovic, T., and Slusallek, P., Light transport simulation with vertex connection and merging, Proc. of the ACM SIGGRAPH Asia, ACM Trans. Graph. 2012, vol. 31, no. 6.

  35. Sik, M. and Krivanek, J., Survey of Markov chain Monte Carlo methods in light transport simulation, IEEE Trans.Visual. Comput. Graph., 2018, vol. 26, no. 4, pp. 1821–1840.

    Article  Google Scholar 

  36. Ershov, S.V. and Voloboy, A.G., Calculation of MIS weights for bidirectional path tracing with photon maps in presence of direct illumination, Math. Montisnigri, 2020, vol. 48, pp. 86–102.

    Article  MathSciNet  Google Scholar 

  37. Pharr, M., Jakob W., and Humphreys, G., Physically Based Rendering: From Theory to Implementation, San Francisco: Morgan Kaufmann, 2016, 3rd ed.

    Google Scholar 

  38. Schussler, V., Heitz, E., Hanika, J., and Dachsbacher, C. Microfacet-based normal mapping for robust Monte Carlo path tracing, ACM Trans. Graph. (TOG), 2017, vol. 36, no. 6, pp. 1–12.

    Article  Google Scholar 

  39. Baek S.H. et al. Simultaneous acquisition of polarimetric SVBRDF and normals, ACM Trans. Graph., 2018, vol. 37, no. 6, pp. 268:1–268:15.

  40. Bar C. et al. A Monte Carlo framework for rendering speckle statistics in scattering media, ACM Trans. Graph. (TOG), 2019, vol. 38, no. 4, pp. 1–22.

    Article  Google Scholar 

  41. Andrey Zhdanov, A., Zhdanov, D., Sokolov, V., Potemin, I.S., Ershov, S., and Galaktionov. V., Problems of the realistic image synthesis in media with a gradient index of refraction, Proc. of SPIE 11548, Optical Design and Testing X ., 2020, 115480W.

    Google Scholar 

  42. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P., Lightcuts: A scalable approach to illumination, ACM Trans. Graph., 2005, vol. 24, no. 3, pp. 1098–1107.

    Article  Google Scholar 

  43. Moreau, P. and Clarber, P., Importance Sampling of Many Lights on the GPU, in Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs, Berkeley: Springer Nature, 2019, Chapter 18.

    Google Scholar 

  44. Johannes, H., Droske, M., and Fascione, L., Manifold next event estimation, Comp. Graph. Forum, 2015, vol. 34, no. 4, pp. 87–97.

  45. Kaplanyan, A.S. and Dachsbacher, C., Adaptive progressive photon mapping, ACM Trans. Graph., 2013, vol. 32, no. 2, Article 16.

    Article  MATH  Google Scholar 

  46. Suykens, F. and Willems, Y.D., Density control for photon maps, Proc. of the Eurographics Workshop on Rendering, 2000, pp. 23–34.

  47. Spencer, B. and Jones, M.W., Progressive photon relaxation, ACM Trans. Graph., 2013, vol. 32, no. 1, Article 7.

    Article  Google Scholar 

  48. Jarosz, W., Wann Jensen, H., and Donner, C., Advanced global illumination using photon mapping, ACM SIGGRAPH 2008 classes (SIGGRAPH ’08), New York: ACM, 2008, Article2, pp. 1–112.

  49. Zhdanov, A.D., Zhdanov, D.D., and Biryukov, E.D., Realistic rendering based on forward and beckward photon maps, Preprint of the Keldysh Institute of Applied Mathematics, 2020, Moscow, no. 77, 22 p.

  50. Zhdanov, D.D., Ershov, S.V., and Voloboy, A.G., Adaptive choice of the backward ray tracing depth in bidirectional stochastic ray tracing, Trudy Mezd. Konferentsii Graficon, Protvino, 2015, pp. 44–49.

    Google Scholar 

  51. Ershov, S.V., Zhdanov, D.D., Voloboy, A.G., and Deryabin, N.B., The method of quasi-specular elements to reduce stochastic noise in illumination simulation, Light Eng., 2020, vol. 5, pp. 39–47.

    Article  Google Scholar 

  52. Zhdanov, A., Zhdanov, D., and Galaktionov, V., Realistic image synthesis with hybrid photon maps, Proc. of SPIE, 2020, 115500G.

  53. Havran, V., Herzog, R., and Seidel H.P., Fast final gathering via reverse photon mapping, EUROGRAPHICS, 2005, vol. 24, no. 3.

  54. Zhdanov, A. and Zhdanov, D., The Backward Photon Mapping for the Realistic Image Rendering, Proc. 30th Conf. on Computer Graphics and Machine Vision (GraphiCon 2020), St Petersburg, CEUR Workshop Proceedings, 2020, Vol. 2744.

  55. Kaplanyan, A. S. and Dachsbacher, C., Path space regularization for holistic and robust light transport, Comput. Graph. Forum, Oxford, UK: Blackwell, 2013, vol. 32, no. 2, pp. 63–72.

  56. Render Legion. Corona Render System. https://corona-renderer.com. Accessed January 26, 2021.

  57. Izotov, I., Lessons of 3D Max. Caustics CORONA: Water in a basin with caustics in the crown, Videolesson om Youtube, 2018. https://www.youtube.com/watch?v=Nv1ULR8sMZY. Accessed January 26, 2021.

  58. Schutte. J., Vertex connection and merging, Rendering Equations Blog, 2018. https://schuttejoe.github.io/post/vertexconnectionandmerging. Accessed January 26, 2021.

  59. Vorba, J., Hanika J., Herholz, S., Muller, T., Krivanek, J., and Keller, A., Path guiding in production, ACM SIGGRAPH 2019 Courses (SIGGRAPH ’19), New York: ACM, 2019, Article 18, pp. 1–77.

  60. Herholz, S. et al. Product importance sampling for light transport path guiding, Comput. Graph. Forum, 2016, vol. 35, no. 4, pp. 67–77.

    Article  Google Scholar 

  61. Guo, J. et al. Primary sample space path guiding, Eurographics Symposium on Rendering, 2018, pp. 73–82.

  62. Rath, A. et al. Variance-aware path guiding, ACM Trans, Graph. (TOG), 2020, vol. 39, no. 4, Article 151, pp. 1–12.

  63. Muller, T., Gross, M., and Novik J., Practical path guiding for efficient light-transport simulation, Comput. Graph. Forum, 2017, vol. 36, pp. 91–100.

    Article  Google Scholar 

  64. Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, C., and Yoon, S.-E., Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering, Comput. Graph. Forum., 2015, vol. 34, no. 2, pp. 667–681.

    Article  Google Scholar 

  65. Ershov, S.V. Zhdanov, D.D., Voloboy, A.G., and Galaktionov, V.A., Two denoising algorithms for bi-directional Monte Carlo ray tracing, Math. Montisnigri, 2018, vol. 43, pp. 78–100.

    MathSciNet  Google Scholar 

  66. Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K., Humphrey, G., Zwicker, M., and Wann Jensen, H., Multidimensional adaptive sampling and reconstruction for ray tracing, ACM Trans. Graph., 2008, vol. 27, no. 3, Article 33.

    Article  Google Scholar 

  67. Kettunen, M. et al., Gradient-domain path tracing, ACM Trans. Graph. (TOG), 2015, vol. 34, no. 4, pp. 1–13.

    Article  MATH  Google Scholar 

  68. Lehtinen, J. et al., Gradient-domain Metropolis light transport, ACM Trans. Graph. (TOG), 2013, vol. 32, no. 4, pp. 1–12.

    Article  MATH  Google Scholar 

  69. Manzi, M. et al., Gradient-Domain Bidirectional Path Tracing, EGSR, 2015, pp. 65–74.

    MATH  Google Scholar 

  70. Manzi, M., Kettunen, M., Durand, F., Zwicker, M., and Lehtinen, J., Temporal gradient-domain path tracing, ACM Trans. Graph., 2016, vol. 35, no. 6, Article 246.

    Article  MATH  Google Scholar 

  71. Hua B. S. et al., Gradient-domain Photon Density Estimation, Comput. Graph. Forum, 2017, vol. 36, no. 2, pp. 31–38.

    Article  Google Scholar 

  72. Krivanek J. et al., Making radiance and irradiance caching practical: Adaptive caching and neighbor clamping, Rendering Techniques, 2006. pp. 127–138.

    Google Scholar 

  73. Schwarzhaupt, J., Wann Jensen, H., and Jarosz, W., Practical Hessian-based error control for irradiance caching, ACM Trans. Graph. (TOG), 2012, vol. 31, no. 6, pp. 1–10.

    Article  Google Scholar 

  74. Sanzharov, V.V., Frolov, V.A. and Galaktionov, V.A., Survey of Nvidia RTX Technology, Program. Comput. Software, 2020, vol. 46, no. 4, pp. 297–304.

    Article  Google Scholar 

  75. Meister, D. et al. On Ray Reordering Techniques for Faster GPU ray tracing, Symposium on Interactive 3D Graphics and Games, 2020, pp. 1–9.

  76. Van Antwerpen, D., Recursive MIS Computation for Streaming BDPT on the GPU, Technical report, Delft Univ. of Technology, 2011.

    Google Scholar 

  77. Nocak, J., Havran, V., and Daschbacher, Path regeneration for interactive path tracing, EUROGRAPHICS, 2010, short papers, pp.61–64.

  78. Van Antwerpen, Unbiased physically based rendering on the GPU, Master Thesis, Delft Univ. of Technology, the Netherlands, 2011.

  79. Frolov, V.A. and Galaktionov, V.A., Low overhead path regeneration, Program. Comput. Software, 2016, vol. 42, no. 6, pp. 382–387.

    Article  Google Scholar 

  80. Fabianowski, B. and Dingliana, J., Interactive Global Photon Mapping, Comp. Graph. Forum, 2009, vol. 28, no. 4, pp. 1151–1159.

  81. Garanzha, K., Pantaleoni, J., and McAllister, D., Simpler and faster HLBVH with work queues, Proc. of the ACM SIGGRAPH Symposium on High Performance Graphics, New York: ACM, 2011, pp. 59–64.

  82. Frolov, V.A., Kharlamov, A.A., Galaktionov, V.A., and Vostryakov, K.A., Multiple reference octrees for a GPU photon mapping and irradiance caching, Program. Comput. Software, 2014, vol. 40, no. 4, pp. 208–214.

    Article  MathSciNet  Google Scholar 

  83. Hachisuka, T. and Wann Jensen, H., Parallel progressive photon mapping on GPUs, ACM SIGGRAPH ASIA, New York: ACM, 2010, Article 54, 1.

  84. Garanzha, K., Pantaleoni, J., and McAllister, D., Simpler and faster HLBVH with work queues, Proc. of the ACM SIGGRAPH Symposium on High Performance Graphics, New York: ACM, 2011, pp. 59–64.

  85. Karras, T., Maximizing parallelism in the construction of BVHs, Octrees, and k-d Trees, EGGH-HPG’12 Proc. of the Fourth ACM SIGGRAPH Eurographics Conference on High-Performance Graphics, 2012, pp. 33–37.

  86. Davidovic, T., Krivanek, J., Hasan, M., and Slusallek, P., Progressive light transport simulation on the GPU: Survey and improvements, ACM Trans. Graph., 2014, vol. 33, no. 3, Article 29.

    Article  Google Scholar 

  87. Laine, S., Karras, T., and Aila, T., Megakernels considered harmful: Wavefront path tracing on GPUs, Proc. of the 5th High-Performance Graphics Conference (HPG ’13), New York: ACM, 2013, pp. 137–143.

  88. Ashikhmin, M., Premoze, S., Shirley, P., and Smits, B., A Variance analysis of the Metropolis light transport algorithm, Comput. Graphics, 2001, pp. 287–294.

  89. Kiivanek, J, Georgiev, I., Kaplanyan, A.S., and Canada, J., Recent advances in light transport simulation: Theory and practice, ACM SIGGRAPH Courses, 2013.

    Google Scholar 

  90. Otsu, H., Yue, Y., Hou, Q., Iwasaki, K., Dobashi, Y., and Nishita, T., Replica exchange light transport on relaxed distributions, ACM SIGGRAPH 2013 Posters (SIGGRAPH ’13), New York: ACM, Article 106.

  91. Duane, S., Kennedy, A. D., Pendleton, B.J., and Roweth, D., Hybrid Monte Carlo, Phys. Lett., 1987, vol. 195, no. 2, pp 216–222.

    Article  MathSciNet  Google Scholar 

  92. Betancourt, M., A conceptual introduction to Hamiltonian Monte Carlo, 2017. arXiv:1701.02434.

  93. Rioux-Lavoie, D. et al. Delayed rejection Metropolis light transport, ACM Trans. Graph. (TOG), 2020, vol. 39, no. 3, pp. 1–14.

    Article  Google Scholar 

  94. Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas, Langevin Monte Carlo rendering with gradient-based adaptation, ACM Trans. Graph., 2020, vol. 39, no. 4, Article 140.

    Article  Google Scholar 

  95. Duong, M.H., Lamacz, A., Peletier, M.A., Schlichting, A., and Sharma, A., Quantification of coarse-graining error in Langevin and overdamped Langevin dynamics, 2017. arXiv:1712.09920 .

  96. Roberts, G.O. and Stramer, O., Langevin diffusions and Metropolis–Hastings algorithms, Methodology Comput. Appl. Probab., 2002, vol. 4, no. 4. pp. 337–357.

    Article  MathSciNet  MATH  Google Scholar 

  97. Leal, R.J., CppADCodeGen. Source Code Generation for Automatic Differentiation using Operator Overloading, GitHub, 2011. https://github.com/joaoleal/CppADCodeGen, accessed January 26, 2021.

  98. Nimier-David, M., Vicini, D., Zeltner, T., and Jakob, W., Mitsuba 2: A retargetable forward and inverse renderer, ACM Trans. Graph., 2019, vol. 38, no. 6, Article 203.

    Article  Google Scholar 

  99. Vassilev, V., Vassilev, M., Penev, A., Moneta, L., and Ilieva, V., Clad – Automatic Differentiation Using Clang and LLVM, J. Phys.: Conf. Ser., 2015, vol. 608, no 1.

  100. Girolami, M. and Calderhead, B., Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. Roy. Stat. Soc., Ser. B, 2011, vol. 73, no. 2, pp. 123–214.

    Article  MathSciNet  MATH  Google Scholar 

  101. OTOY. Octane Render. https://home.otoy.com/render/octane-render, accessed 26.01.2021.

  102. Frolov. V.A., Investigation of multiplexed Metropolis light transport on GPUs, Preprint of the Keldysh Institute of Applied Mathematics, 2018, Moscow, no. 267, 47 p.

  103. Swendsen, R.H. and Wang, J.-S. Replica Monte Carlo simulation of spin-glasses, Phys. Rev. Lett., 1986, vol. 57, pp. 2607–2609.

    Article  MathSciNet  Google Scholar 

  104. Earl, D.J. and Deem, M.W., Parallel tempering: Theory, applications, and new perspectives, Phys. Chem. Chem. Phys., 2005, vol. 7.

  105. Hachisuka, T. and Wann Jensen, H., Robust adaptive photon tracing using photon path visibility, ACM Trans. Graph., 2011, vol. 30, no. 5, Article 114.

    Article  Google Scholar 

  106. Antwerpen, D., Improving SIMD efficiency for parallel Monte Carlo light transport on the GPU, Proc. of the ACM SIGGRAPH Symposium on High Performance Graphics (HPG ’11), Spencer, S. N., Ed., New York: ACM, 2011, pp. 41–50.

  107. Frolov, V.A. and Galaktionov. V.A., Memory-compact Metropolis light transport on GPUs, Program. Comput. Software, 2017, vol. 43, no. 3, pp. 196–203.

    Article  MathSciNet  Google Scholar 

  108. Schmidt, M., Lobachev, O., and Guthe, M., Coherent Metropolis light transport on the GPU using speculative mutations, J. WSCG, 2016, vol. 1.

    Google Scholar 

  109. Frolov, V., Snazharov, V., Trofimov, M., and Galaktionov, V., Hydra Renderer. Open Source GPU rendering system, GitHub, 2019. URL=https://github.com/Ray-Tracing-Systems/HydraAPI, (accessed February 10, 2021.

  110. Zirr, T., Hanika, J., and Dachsbacher, R., Re-weighting firefly samples for improved finite-sample Monte Carlo estimates, Comput. Graph. Forum, 2018, vol. 37, no. 6, pp. 410-421.

    Article  Google Scholar 

  111. Van de Woestijne, J., Frederickx, R., Billen, N., and Dutre, P., Temporal coherence for Metropolis light transport, Proc. of the Eurographics Symposium on Rendering: Experimental Ideas and Implementations, 2017, Eurographics Association, Goslar, DEU, 55–63. DOI:https://doi.org/https://doi.org/10.2312/sre.20171194.

  112. Novák J. et al., Monte Carlo methods for volumetric light transport simulation, Comput. Graph. Forum, 2018, vol. 37, no. 2, pp. 551-576.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Kirill Garanzha for valuable critical remarks made during preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Frolov, A. G. Voloboy or V. A. Galaktionov.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, V.A., Voloboy, A.G., Ershov, S.V. et al. Light Transport in Realistic Rendering: State-of-the-Art Simulation Methods. Program Comput Soft 47, 298–326 (2021). https://doi.org/10.1134/S0361768821040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768821040034

Navigation