Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the directed-bond percolation process (sometimes called the Gribov process because it formally resembles Reggeon field theory) in the presence of irrotational velocity fluctuations with long-range correlations. We use the renormalization group method to investigate the phase transition between an active and an absorbing state. All calculations are in the one-loop approximation. We calculate stable fixed points of the renormalization group and their regions of stability in the form of expansions in three parameters (ε, y, η). We consider different regimes corresponding to the Kraichnan rapid-change model and a frozen velocity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. H. Hinrichsen, “Non-equilibrium phase transitions,” Phys. A, 369, 1–28 (2006).

    Article  MathSciNet  Google Scholar 

  2. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London (1992).

    MATH  Google Scholar 

  3. M. Henkel, H. Hinrichsen, and S. Lübeck, Non-Equilibrium Phase Transitions, Vol. 1, Absorbing Phase Transitions, Springer, Dordrecht (2008).

    MATH  Google Scholar 

  4. F. Schlögl, “Chemical reaction models for non-equilibrium phase transitions,” Z. Phys., 253, 147–161 (1972).

    Article  ADS  Google Scholar 

  5. P. Grassberger, “On phase transitions in Schlögl’s second model,” Z. Phys. B, 47, 365–372 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. N. Gribov, “A Reggeon diagram technique,” Sov. Phys. JETP, 26, 414–422 (1968).

    ADS  Google Scholar 

  7. J. L. Cardy and R. L. Sugar, “Directed percolation and Reggeon field theory,” J. Phys. A, 13, L423–L427 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  8. H. Hinrichsen, “Non-equilibrium phase transitions with long-range interactions,” J. Stat. Mech., 2007, P07006 (2007).

    Article  MathSciNet  Google Scholar 

  9. H. K. Janssen, “On the nonequilibrium phase transition in reaction–diffusion systems with an absorbing stationary state,” Z. Phys. B, 42, 151–154 (1981).

    Article  ADS  Google Scholar 

  10. H. K. Janssen, “Renormalized field theory of the Gribov process with quenched disorder,” Phys. Rev. E, 55, 6253–6256 (1997).

    Article  ADS  Google Scholar 

  11. P. Rupp, R. Richter, and I. Rehberg, “Critical exponents of directed percolation measured in spatiotemporal intermittency,” Phys. Rev. E, 67, 036209 (2003).

    Article  ADS  Google Scholar 

  12. K. A. Takeuchi, M. Kuroda, H. Chaté, and M. Sano, “Directed percolation criticality in turbulent liquid crystals,” Phys. Rev. Lett., 99, 234503 (2007).

    Article  ADS  Google Scholar 

  13. G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Modern Phys., 73, 913–975 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 6, Fluid Mechanics, Nauka, Moscow (1986); English transl. prev. ed., Pergamon, Oxford (1959).

    Google Scholar 

  15. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge (1995).

    MATH  Google Scholar 

  16. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics [in Russian], Vol. 2, Mechanics of Turbulence, Nauka, Moscow (1967); English transl., MIT Press, Cambridge (1975).

    Google Scholar 

  17. N. V. Antonov, “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field,” Phys. Rev. E, 60, 6691–6707 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. Benzi and D. R. Nelson, “Fisher equation with turbulence in one dimension,” Phys. D, 238, 2003–2015 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Pigolotti, R. Benzi, M. H. Jensen, and D. R. Nelson, “Population genetics in compressible flows,” Phys. Rev. Lett., 108, 128102 (2012).

    Article  ADS  Google Scholar 

  20. R. Volk, C. Mauger, M. Bourgoin, C. Cottin-Bizonne, C. Ybert, and F. Raynal, “Chaotic mixing in effective compressible flows,” Phys. Rev. E, 90, 013027 (2014).

    Article  ADS  Google Scholar 

  21. M. De Pietro, M. A. T. van Hinsberg, L. Biferale, H. J. H. Clercx, P. Perlekar, and F. Toschi, “Clustering of vertically constrained passive particles in homogeneous isotropic turbulence,” Phys. Rev. E, 91, 053002 (2015).

    Article  ADS  Google Scholar 

  22. N. V. Antonov, “Anomalous scaling of a passive scalar advected by the synthetic compressible flow,” Phys. D, 144, 370–386 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  23. N. V. Antonov, V. I. Iglovikov, and A. S. Kapustin, “Effects of turbulent mixing on the nonequilibrium critical behaviour,” J. Phys. A, 42, 135001 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. N. V. Antonov and A. S. Kapustin, “Effects of turbulent mixing on critical behaviour in the presence of compressibility: Renormalization group analysis of two models,” J. Phys. A: Math. Theor., 43, 405001 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. N. V. Antonov, A. S. Kapustin, and A. V. Malyshev, “Effects of turbulent transfer on critical behavior,” Theor. Math. Phys., 169, 1470–1480 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Danco, M. Gnatich, T. Lučivjanský, and L. Mizisin, “Critical behavior of percolation process influenced by a random velocity field: One–loop approximation,” Theor. Math. Phys., 176, 898–905 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. N. Vasil’ev, Quantum Field Renormalization Group in Critical Behavior Theory and Stochastic Dynamics [in Russian], PIYaF, St. Petersburg (1998); English transl.: The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman and Hall/CRC, Boca Raton, Fla. (2004).

    Google Scholar 

  28. H.-K. Janssen and U. C. Täuber, “The field theory approach to percolation processes,” Ann. Phys., 315, 147–192 (2004); arXiv:cond-mat/0409670v1 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Doi, “Second quantization representation for classical many-particle system,” J. Phys. A: Math. Gen., 9, 1465–1478 (1976); “Stochastic theory of diffusion-controlled reaction,” J. Phys. A: Math. Gen., 9, 1479–1496 (1976).

    Article  ADS  Google Scholar 

  30. H. K. Janssen, “On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties,” Z. Phys. B, 23, 377–380 (1976).

    Article  ADS  Google Scholar 

  31. C. De Dominicis, “Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques,” J. Phys. Colloques France, 37, C1-247–C1-254 (1976).

    Google Scholar 

  32. H. K. Janssen, Dynamical Critical Phenomena and Related Topics (Lect. Notes Phys., Vol. 104), Springer, Berlin (1979).

    Google Scholar 

  33. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford (2002).

    Book  MATH  Google Scholar 

  34. L. Ts. Adzhemyan and N. V. Antonov, “Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow,” Phys. Rev. E, 58, 7381–7396 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  35. D. J. Amit and V. Martín-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, World Scientific, Singapore (2005).

    Book  MATH  Google Scholar 

  36. U. C. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior, Cambridge Univ. Press, Cambridge (2014).

    Google Scholar 

  37. L. Ts. Adzhemyan, N. V. Antonov, and T. L. Kim, “Composite operators, operator expansion, and Galilean invariance in the theory of fully developed turbulence: Infrared corrections to Kolmogorov scaling,” Theor. Math. Phys., 100, 1086–1099 (1994).

    Article  MATH  Google Scholar 

  38. N. V. Antonov, S. V. Borisenok, and V. I. Girina, “Renormalization group in the theory of fully developed turbulence: Composite operators of canonical dimension 8,” Theor. Math. Phys., 106, 75–83 (1996).

    Article  MATH  Google Scholar 

  39. N. V. Antonov and A. N. Vasil’ev, “Renormalization group in the theory of developed turbulence: The problem of justifying the Kolmogorov hypotheses for composite operators,” Theor. Math. Phys., 110, 97–108 (1997).

    Article  MATH  Google Scholar 

  40. D. Forster, D. R. Nelson, and M. J. Stephen, “Large-distance and long-time properties of a randomly stirred fluid,” Phys. Rev. A, 16, 732–749 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Hnatich and J. Honkonen, “Velocity-fluctuation-induced anomalous kinetics of the A+ AØ reaction,” Phys. Rev. E, 61, 3904–3911 (2000).

    Article  ADS  Google Scholar 

  42. J. Honkonen and E. Karjalainen, “Diffusion in a random medium with long-range correlations,” J. Phys. A: Math. Gen., 21, 4217–4234 (1988).

    Article  ADS  Google Scholar 

  43. K. Gawȩdzki and M. Vergassola, “Phase transition in the passive scalar advection,” Phys. D, 138, 63–90 (1999).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Antonov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 3, pp. 377–390, March, 2017.

This research was supported by the Ministry of Education, Science, Research, and Sport of the Slovak Republic (VEGA Grant No. 1/0345/17).

The research of N. V. Antonov was supported by St. Petersburg State University (Research Grant No. 11.38.185.2014).

The research of A. S. Kapustin was supported by St. Petersburg State University (Research Grant No. 11.38.185.2014) and the Russian Foundation for Basic Research (Grant No. 16-32-00086).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, N.V., Hnatich, M., Kapustin, A.S. et al. Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach. Theor Math Phys 190, 323–334 (2017). https://doi.org/10.1134/S0040577917030023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917030023

Keywords

Navigation