Abstract
We study the directed-bond percolation process (sometimes called the Gribov process because it formally resembles Reggeon field theory) in the presence of irrotational velocity fluctuations with long-range correlations. We use the renormalization group method to investigate the phase transition between an active and an absorbing state. All calculations are in the one-loop approximation. We calculate stable fixed points of the renormalization group and their regions of stability in the form of expansions in three parameters (ε, y, η). We consider different regimes corresponding to the Kraichnan rapid-change model and a frozen velocity field.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
H. Hinrichsen, “Non-equilibrium phase transitions,” Phys. A, 369, 1–28 (2006).
D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London (1992).
M. Henkel, H. Hinrichsen, and S. Lübeck, Non-Equilibrium Phase Transitions, Vol. 1, Absorbing Phase Transitions, Springer, Dordrecht (2008).
F. Schlögl, “Chemical reaction models for non-equilibrium phase transitions,” Z. Phys., 253, 147–161 (1972).
P. Grassberger, “On phase transitions in Schlögl’s second model,” Z. Phys. B, 47, 365–372 (1982).
V. N. Gribov, “A Reggeon diagram technique,” Sov. Phys. JETP, 26, 414–422 (1968).
J. L. Cardy and R. L. Sugar, “Directed percolation and Reggeon field theory,” J. Phys. A, 13, L423–L427 (1980).
H. Hinrichsen, “Non-equilibrium phase transitions with long-range interactions,” J. Stat. Mech., 2007, P07006 (2007).
H. K. Janssen, “On the nonequilibrium phase transition in reaction–diffusion systems with an absorbing stationary state,” Z. Phys. B, 42, 151–154 (1981).
H. K. Janssen, “Renormalized field theory of the Gribov process with quenched disorder,” Phys. Rev. E, 55, 6253–6256 (1997).
P. Rupp, R. Richter, and I. Rehberg, “Critical exponents of directed percolation measured in spatiotemporal intermittency,” Phys. Rev. E, 67, 036209 (2003).
K. A. Takeuchi, M. Kuroda, H. Chaté, and M. Sano, “Directed percolation criticality in turbulent liquid crystals,” Phys. Rev. Lett., 99, 234503 (2007).
G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Modern Phys., 73, 913–975 (2001).
L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 6, Fluid Mechanics, Nauka, Moscow (1986); English transl. prev. ed., Pergamon, Oxford (1959).
U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge (1995).
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics [in Russian], Vol. 2, Mechanics of Turbulence, Nauka, Moscow (1967); English transl., MIT Press, Cambridge (1975).
N. V. Antonov, “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field,” Phys. Rev. E, 60, 6691–6707 (1999).
R. Benzi and D. R. Nelson, “Fisher equation with turbulence in one dimension,” Phys. D, 238, 2003–2015 (2009).
S. Pigolotti, R. Benzi, M. H. Jensen, and D. R. Nelson, “Population genetics in compressible flows,” Phys. Rev. Lett., 108, 128102 (2012).
R. Volk, C. Mauger, M. Bourgoin, C. Cottin-Bizonne, C. Ybert, and F. Raynal, “Chaotic mixing in effective compressible flows,” Phys. Rev. E, 90, 013027 (2014).
M. De Pietro, M. A. T. van Hinsberg, L. Biferale, H. J. H. Clercx, P. Perlekar, and F. Toschi, “Clustering of vertically constrained passive particles in homogeneous isotropic turbulence,” Phys. Rev. E, 91, 053002 (2015).
N. V. Antonov, “Anomalous scaling of a passive scalar advected by the synthetic compressible flow,” Phys. D, 144, 370–386 (2000).
N. V. Antonov, V. I. Iglovikov, and A. S. Kapustin, “Effects of turbulent mixing on the nonequilibrium critical behaviour,” J. Phys. A, 42, 135001 (2008).
N. V. Antonov and A. S. Kapustin, “Effects of turbulent mixing on critical behaviour in the presence of compressibility: Renormalization group analysis of two models,” J. Phys. A: Math. Theor., 43, 405001 (2010).
N. V. Antonov, A. S. Kapustin, and A. V. Malyshev, “Effects of turbulent transfer on critical behavior,” Theor. Math. Phys., 169, 1470–1480 (2011).
M. Danco, M. Gnatich, T. Lučivjanský, and L. Mizisin, “Critical behavior of percolation process influenced by a random velocity field: One–loop approximation,” Theor. Math. Phys., 176, 898–905 (2013).
A. N. Vasil’ev, Quantum Field Renormalization Group in Critical Behavior Theory and Stochastic Dynamics [in Russian], PIYaF, St. Petersburg (1998); English transl.: The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman and Hall/CRC, Boca Raton, Fla. (2004).
H.-K. Janssen and U. C. Täuber, “The field theory approach to percolation processes,” Ann. Phys., 315, 147–192 (2004); arXiv:cond-mat/0409670v1 (2004).
M. Doi, “Second quantization representation for classical many-particle system,” J. Phys. A: Math. Gen., 9, 1465–1478 (1976); “Stochastic theory of diffusion-controlled reaction,” J. Phys. A: Math. Gen., 9, 1479–1496 (1976).
H. K. Janssen, “On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties,” Z. Phys. B, 23, 377–380 (1976).
C. De Dominicis, “Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques,” J. Phys. Colloques France, 37, C1-247–C1-254 (1976).
H. K. Janssen, Dynamical Critical Phenomena and Related Topics (Lect. Notes Phys., Vol. 104), Springer, Berlin (1979).
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford (2002).
L. Ts. Adzhemyan and N. V. Antonov, “Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow,” Phys. Rev. E, 58, 7381–7396 (1998).
D. J. Amit and V. Martín-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, World Scientific, Singapore (2005).
U. C. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior, Cambridge Univ. Press, Cambridge (2014).
L. Ts. Adzhemyan, N. V. Antonov, and T. L. Kim, “Composite operators, operator expansion, and Galilean invariance in the theory of fully developed turbulence: Infrared corrections to Kolmogorov scaling,” Theor. Math. Phys., 100, 1086–1099 (1994).
N. V. Antonov, S. V. Borisenok, and V. I. Girina, “Renormalization group in the theory of fully developed turbulence: Composite operators of canonical dimension 8,” Theor. Math. Phys., 106, 75–83 (1996).
N. V. Antonov and A. N. Vasil’ev, “Renormalization group in the theory of developed turbulence: The problem of justifying the Kolmogorov hypotheses for composite operators,” Theor. Math. Phys., 110, 97–108 (1997).
D. Forster, D. R. Nelson, and M. J. Stephen, “Large-distance and long-time properties of a randomly stirred fluid,” Phys. Rev. A, 16, 732–749 (1977).
M. Hnatich and J. Honkonen, “Velocity-fluctuation-induced anomalous kinetics of the A+ AØ reaction,” Phys. Rev. E, 61, 3904–3911 (2000).
J. Honkonen and E. Karjalainen, “Diffusion in a random medium with long-range correlations,” J. Phys. A: Math. Gen., 21, 4217–4234 (1988).
K. Gawȩdzki and M. Vergassola, “Phase transition in the passive scalar advection,” Phys. D, 138, 63–90 (1999).
Author information
Authors and Affiliations
Corresponding author
Additional information
Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 3, pp. 377–390, March, 2017.
This research was supported by the Ministry of Education, Science, Research, and Sport of the Slovak Republic (VEGA Grant No. 1/0345/17).
The research of N. V. Antonov was supported by St. Petersburg State University (Research Grant No. 11.38.185.2014).
The research of A. S. Kapustin was supported by St. Petersburg State University (Research Grant No. 11.38.185.2014) and the Russian Foundation for Basic Research (Grant No. 16-32-00086).
Rights and permissions
About this article
Cite this article
Antonov, N.V., Hnatich, M., Kapustin, A.S. et al. Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach. Theor Math Phys 190, 323–334 (2017). https://doi.org/10.1134/S0040577917030023
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0040577917030023